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Introduction 
This technical report aims to walk the reader through our process in creating a chat bot designated for 
booking train tickets, predicting train delays, and providing sufficient customer service making the chat 
bot easier to use. Our group named Natural Unintelligence consists of three members, Sam Humphreys, 
Martin Siddons, and Steven Diep. The report covers how we gathered an understanding of how a chat 
bot should be made and their necessary requirements through background research, and how the work 
was allocated between three undergraduate students. We also discuss the tools we used to build each 
of the several parts of the chat bot and its integration, the parts mentioned consists of the reasoning 
engine (Pyknow), natural language processing (Spacy), prediction model (sklearn), web scraping 
(beautiful soup), database (SQLite3), user interface (Flask), speech to text (Javascript). Through reading 
this report you should expect to gain a grasp of how to build a chatbot from the tools we used and 
understand the project directions we took collectively. 

 

Initial plan 
To gain valuable insight on how to complete this assignment efficiently, we organised a weekly meeting 
in covering each part of the chat bot we needed to implement whilst using a shared document to record 
for potential future purposes. Once we have figured out each component and their requirements, we 
then decided who is most suited for completing each part. A private repository on GitHub was also 
shared between the three of us to have a cohesive workflow while tracking each other's progress. 

 

Distribution of workload 
The decision in workload was to distribute each part evenly, this was the decided assignment: 

• Sam Humphreys 
• User interface 
• Natural language processing 
• Speech to text 

• Steven Diep 
• Reasoning engine 
• Knowledge base 

• Martin Siddons 
• Prediction model 
• Database 
• Web scraping 

 

The percentage contribution is agreed to be 33%  



   
 

   
 

 

Initial design 
Following the initial analysis, we discussed what the basic system would look like and what information 
each component of the system would send and receive. We then mapped this information to a 
functional diagram, as shown below. 

 

Figure 1: Initial Design Diagram 

 

Related work 
This section covers the background work we did on developing a chat bot system, it enables us to have a 
clearer vision in what we would have to implement in the chat bot and the order in which we should do 
so. 

 



   
 

   
 

Background research 
To figure out what is necessary to implement for the chat bot we should delve into guidelines that 
explores the many features a chat bot is required to have. The fundamentals of a chat bot should consist 
of appropriate feedback to the end user and matching their responses with a decided set of dialogs. An 
example would be, the user responding "Hello!", the bot should then recognise the user's dialog and 
respond appropriately through understanding that it is a greeting thus prompting the bot to either 
respond with "Hey!", "Hello!", or "Hi". A feasible way in achieving responses from complex dialog from 
the end user is using natural language processing and understanding, it allows the bot to pick up on 
information that are concatenated within long sentences. The bot must only serve its intended purpose 
and be transparent to the user what services it provides https://www.microsoft.com/en-
us/research/uploads/prod/2018/11/Bot_Guidelines_Nov_2018.pdf.  

Chat bots are also used for a multitude of reasons other than the assignment we were set; they serve 
use to those running businesses with a large customer base. Building a knowledge base suited towards 
customer queries regarding the business can alleviate the stress put upon a human customer service 
team, through answering simple queries such as with faster response time can greatly improve on the 
quality of customer satisfaction https://www.groovehq.com/blog/building-knowledge-base. Chat bots 
are particularly useful to those who rely on answering the same query in multiple instances such as 
ordering a specific product or service, the bot can also be adjusted to add more questions and answers 
in the case of the business expanding. 

 

Aim and Objectives 
For our initial analysis, we discussed what features were necessary for the system to work and what 
extra features we believe users of the system would like to see. We have compiled these features into 
the MoSCoW Analysis below. 

• Must 
• Have a way for the user to communicate with the system. 
• Perform Natural Language Processing to understand user requests. 
• Display appropriate and accurate answer to user, also handle bad questions. 
• Contain one model to predict train delays. 
• Use a Reasoning Engine to find ticket data. 
• Hold ticket data in the Knowledgebase. 
• Limit bot to its purpose only. Do not engage in race, gender, politics, and religion. 

• Should 
• A UI which mimics a chat program 
• Utilise multiple models to predict train delays. 
• The ability to understand and correct user misspellings. 
• Offer a detailed explanation of the purpose and operation of the bot. 
• Ability to remember previous search details to help predict future searches, i.e., 

understanding that the user travels from Norwich so Norwich would be classed as the 
default “from” station after a couple searches. 

• Could 



   
 

   
 

• Knowledge Acquisition system 
• Text-to-Speech and Speech-to-Text system 
• Clickable links in chatbot replies to change specific details (from / to / date etc.) 
• Clickable links in chatbot text to quickly move into certain queries. 
• Support for understanding other ticket types such as Child or Railcard holder 
• Ability to scrape rail FAQs for Q+A functionality. E.g., answering “How can I make a 

complaint about this train? 
• Use of Emoticons to make it more lifelike and friendly. 

• Won’t 
• Use GPS system to improve customer service. 
• User satisfaction of the chatbot (feedback mechanism) 
• Smooth hand-off process, hand conversation to human moderator 
• Code of conduct on users, prohibit hate speech, threatening others, and bullying. 

 

Difficulties and Risks 
Careful planning should be considered for a lengthy project due to unexpected issues that may arise. 
Acknowledging these risks ahead may help alleviate or mitigate the negative impact it may have on the 
project. Here are some possible risks we may have to consider: 

• Agreed deadline for a component of the bot is incomplete. 
• Poor communication 
• Catching an illness or some sort of ailment 
• Investing time into the wrong task/path 
• Hardware problems 
• No access to internet 
• Assumptions without no consultation 
• Misinterpretation of group members 
• Misunderstanding of aim 

 

Work Plan 
As part of our early work, we devised a Gantt Chart to allow us to plan ahead and understand how much 
time we could spend on each part of the system and keep us on-track to complete the project by the 
submission date. We intentionally left some spare time over Christmas to ensure that if we over-ran on 
our personal sections, that we could make it up during that time. 



   
 

   
 

 



   
 

   
 

Methods, Tools and Frameworks 
Methods 
Due to the small project and team size, using Agile would be partially suitable, but having through 
research we felt that Rapid Application Development (RAD) would be best suited. RAD requires the 
developer to produce requirements and then move between design and construction of the system to 
be as flexible as possible to changes we may need to make along the way. It is a methodology that is 
particularly suitable to small and medium projects that are well-defined and must be developed on a 
strict timescale. RAD allows us to change course on features and system design should we find a better 
way of doing things, which is particularly useful as nobody in the group has built an AI project at this 
scale before, so we anticipate running into many issues bringing the system together. 

To stay connected during development, we have a group chat on Microsoft Teams where we can ask 
questions and get feedback from the rest of the group at any time. We have also scheduled meetings on 
Tuesdays to inform the group of what we have all done in the previous week, to talk about any findings 
we have made that may affect integration and to share ideas and get feedback from each other on how 
to progress in the week following the meeting. 

Languages, Packages, Tools 
We have chosen Python as our programming language of choice due to there being a large collection of 
AI libraries available for it, and to allow us to grow our skills in Python.  

We will be using SQLite as our database due to it being simple to use, well-supported in Python and fast. 
Our interface will use Flask as we have some experience using it in the past. For our Knowledgebase and 
Inference Engine, we are looking to use Pyknow due to its powerful features compared to other KB/IE. 
Our Prediction Models will be built using scikit-learn due to its ease of use and the many guides 
available, along with NumPy and Pandas. For NLP, we are looking to use spaCy due to its impressive 
toolkit, we are also looking to use fuzzywuzzy for fuzzy string matching, pyspellchecker for spellchecking 
and datefinder for grabbing dates from text. Finally, for web scraping we will be looking to use Scrapy as 
it appears to be quite feature-rich compared to the alternatives. 

Our code will be hosted on a private GitHub repository where we can create Pull Requests to review and 
test code before it is added to the main project branch. We can also use the Projects feature to track 
features to be completed and which PRs contained those features. Hosting on GitHub also allows us to 
use the Issues system to find and track bugs we might find during integration testing. 

Development Framework 
We spoke about using the Django framework to assist us in producing the UI, but after researching our 
options we decided that Django would probably be more than we would need, and that our previous 
experience with Flask made us comfortable that we could produce a working product without a 
framework. We will look at this in more detail as the project comes together, as it may be that React or 
NodeJS will be useful to use for building JavaScript elements for the UI. 

Design of the Chatbot 
Architecture of the Chatbot 
 



   
 

   
 

User Interface 
Design 
As the chatbot is designed for use by a rail company in a customer-facing environment the users will 
likely interact with it in a web-based manner either through the company website or mobile application. 
To facilitate this a client-server model is used, with the chatbot itself running in a Python Flask (Lord, 
2019) server that clients connect to using a web browser. The client interface is designed to be very 
familiar for users of chat applications. Looking at existing messaging applications, such as: Microsoft 
Skype, Facebook Messenger, and Microsoft Teams, they all possess some common features:  

• Multiple ways to distinguish messages from different senders (message bubbles, colour, 
position, profile picture) 

• A margin is used for long messages so they do not fill the entire chat window. 
• The main controls are located at the bottom of the window alongside the message input area 
• Time and date the message was sent 
• Images and other files can be sent in-window 
• Emojis 

 

Figure 2: Facebook Messenger Interface 

 

 



   
 

   
 

 

Figure 3: Skype Messenger Interface 

 

Figure 4: Microsoft Teams Interface 

To maintain a similar and understandable look and feel of the interface it was determined that the 
interface should incorporate the most relevant features from this list: 



   
 

   
 

• Clear separation of different user messages through left and right positioning, message bubbles 
and profile picture or usernames attached to the message 

• Limited size of each message 
• Message sent times 
• Input controls at the bottom of the window 

Features such as emojis and support for images could be added in a future iteration of the chatbot but 
were deemed ultimately unnecessary for the use case. A mock-up of the desktop chat interface 
produced from these features at the start of the project is shown below in Figure 5. 

 

Figure 5: Original Interface Mock-up 

 

After the layout of the interface and the primary features had been decided research into best practices 
of interface theming and appropriate colour combinations was done. Google’s Material Design (CITE) 
proved to be the best resource for this as it provided both an in-depth study of colour combinations and 
theming, and a vast library of available fonts and icons to be used freely. The final interface colour 
scheme was chosen from an adaptation of the Material Design case study ‘Reply’ (Material Design, 
2021)  



   
 

   
 

 

Figure 6: Reply Case Study Colours (Material Design, 2021) 

The primary grey-blue colour combined with a bright orange secondary colour is intended to be 
suggestive of the UK rail network. With mostly grey and monotonous trains and stations mixed with 
bright splashes of colour, such as the vivid orange tickets. 

 

 

Figure 6: Manchester Piccadilly Station (Livesey, n.d)         Figure 7: UK Train Ticket (Adambro, 2007) 



   
 

   
 

The chat messages sent by both chatbot and user also incorporate lighter versions of the primary and 
secondary colours, respectively, to further distinguish them from each other.   

 

Figure 8: Bot Message Bubble 

 

Figure 9: User Message Bubble 

The icons used for the buttons of the interface were sourced from the Material Design resource, and the 
font for all the text is sourced from Google Fonts (Abbink, n.d). 

First Implementation 
Very early in development, the first iteration of the interface had only basic functionality and almost no 
style or design work had been done. The functionality was entirely Flask based and messages were sent 
to the server with a POST request from the HTML form. This was less than ideal for messaging, however, 
as the page required refreshing to update the messages in the chat window and mainly served as a 
starting point to build upon.   

 

Figure 10: First Implementation 

Second Implementation 
The second iteration attempted to focus on implementing the design choices of the interface, with 
additional work to the HTML layout and incorporation of a CSS stylesheet, it began to resemble initial 
mock-up. Functionality was unchanged from the initial implementation. 



   
 

   
 

 

Figure 11: Second Implementation 

Third Implementation 
The third iteration further develops the style of the application, incorporating the selected colour 
scheme, icons, and message bubbles. To allow messages to be shown in the chat window without 
refreshing the page, message implementation was moved from being form-based with Flask to using 
JavaScript to send Fetch requests to the Flask server that contained the user’s message, which the 
chatbot would then respond to inside the Fetch request’s response. This implementation incorporated 
all base features of the application and was fully functional. The major flaw of this implementation, 
however, was that the messages were sent in a 1:1 manner. The bot could only respond when a user 
had sent it a message. This was not ideal for general use and made situations where the bot would be 
required to send multiple messages impossible. 

 

Figure 12: Third Implementation 



   
 

   
 

Final Implementation 
The final iteration of the client changed the background of the page to the ‘Contact Us’ page of the train 
company Greater Anglia’s website (CITE). The choice of company was purely for convenience and is only 
intended to demonstrate the application closer to the intended use case. The functionality of sending 
and receiving messages was reworked to use a new socket-based method using the JavaScript library 
Socket.IO (Piedrafita et al, 2018), and the corresponding server integration facilitated by the Flask-
SocketIO library (Grinberg, 2014). This now allowed the messages to be completely independent, 
allowing the bot to now send messages as and when it needed to, including multiple messages if 
required, as well as greatly simplifying the underlying functions.  

Three additional features were also added: Button lists, Text-to-Speech, and Speech-to-Text. 

Button lists 

 

Figure 13: London Stations Button List 

When the bot needs to ask the user to choose from a list of information, such as in the case of a 
location-based search of train stations shown above in Figure 13, each element of the list of choices 
presented to the user is displayed in the form of a list of buttons the user can then press rather than 
manually input their response. When a button is pressed the button’s corresponding choice is 
immediately sent as a user message back to the bot.   

Text-to-speech (TTS) 
To improve support for users that either do not wish to, or have difficulty reading the messages sent to 
them by the bot, support for TTS was added which will read out every message sent by the bot if the 
user has enabled this setting. This setting is off by default. When the client receives a message from the 
bot, the client JavaScript checks if the user has enabled TTS. If this is the case then all following 
messages sent by the bot are first stripped of any unnecessary text, specifically HTML code used for 



   
 

   
 

message formatting and the displaying of links and buttons using REGEX. The resulting message is then 
read aloud using the Speech Synthesis interface of the Web Speech API. This interface is regarded as 
‘experimental’ by Mozilla but is shown to be supported by current versions of all major desktop 
browsers, including Chrome, Edge, Firefox and Safari. Android and IOS mobile web browsers are also 
supported.  

 

Figure 14: Web Speech API SpeechSynthesis Support (Mozilla, 2021) 

Speech-to-text 
The Web Speech API also has an interface for Speech Recognition, however, this was not used as it is not 
as well supported. Currently this is only supported by Chrome and Edge desktop browsers as well as only 
Chrome and Samsung browsers on mobile. 

 

Figure 15: Web Speech API SpeechRecognition Support (Mozilla 2021) 

To maximise support for this feature, the user audio is instead processed on the Flask server. First the 
user’s audio is recorded using the JavaScript library RecordRTC (Khan, 2019), primarily to enable 
recording in .wav format, before being sent to the Flask server using a Fetch request containing the 
audio data. The server then processes the audio using the Python SpeechRecognition library (Zhang, 
2017) and returns the text processed from the user’s audio in the Fetch response. The client then adds 
the received text to the message input box for the user to confirm before sending.  

Figures 16, 17 and 18 below show the final version of the client in both desktop and mobile views. 



   
 

   
 

 

 

Figure 16: Final Iteration with Background Image 

 

Figure 17: Final Iteration Desktop Chat Window 



   
 

   
 

 

Figure 18: Final Iteration Mobile View 

  



   
 

   
 

NLP 
Design 
Because the NLP function does not track the state of the main program it is required to try to extract as 
much relevant information as possible from any given user input as it does not have any specific 
information to look for. This extracted information is stored in a 16-key dictionary. Since Experta stores 
its ‘Facts’ internally as dictionary objects then this allows the Reasoning Engine (RE) to use this provided 
dictionary to look for specific information at any given stage of a user conversation and make decisions 
based upon it. The default dictionary can be seen below in Figure 19. 

 

Figure 19: NLP Empty Dictionary 

  

For example, in the query, ‘I would like to book a ticket from Norwich to Forest Gate on 2021/09/09 at 
12:00 and return on 2021/09/09 at 20:00,’ would produce the dictionary seen below in Figure 20. 



   
 

   
 

 

Figure 20: Output NLP Dictionary 

  

This approach allows multiple steps to be taken at once by the user, including an entire query if all 
information has been provided correctly. 

Dictionary Details 
Key: “intent” 

Values: “ticket”, ”help”, ”change” ”cancel” 

Description: The user’s primary intent. Usually only established at the beginning of a conversation. 

 

Key: “reset” 

Values: True, False 

Description: A special intent used to reset and remove all knowledge the chatbot may have of the 
current conversation. 

 

Key: “includes_greeting” 

Values: True, False 

Description: A special intent used to determine if the user message contains a greeting. 

 

Key: “from_station” 

Values: Any valid station from the database 



   
 

   
 

Description: Used if the user enters a valid station and there is no doubt that this is not the destination 
station. 

 

Key: “from_crs” 

Values: Any valid crs code from the database that matches a station 

Description: The matching crs code for any station in the database. Works as a pair with the station key. 

 

Key: “to_station” 

Values: Any valid station from the database 

Description: Used if the user enters a valid station and there is no doubt that this is the destination 
station. 

 

Key: “to_crs” 

Values: Any valid crs code from the database that matches a station 

Description: The matching crs code for any station in the database. Works as a pair with the station key. 

 

Key: “outward_date” 

Values: Any valid date 

Description: Contains a date only if a valid date is entered and it is certain to be the outgoing journey. 

 

Key: “outward_time” 

Values: Any valid time 

Description: Contains a time only if a valid date and time is entered and it is certain to be the outgoing 
journey. 

 

Key: “return_date” 

Values: Any valid date 

Description: Contains a date only if a valid date is entered and it is certain to be the return journey. 

 

Key: “return_time” 



   
 

   
 

Values: Any valid time 

Description: Contains a date only if a valid date and time is entered and it is certain to be the return 
journey. 

 

Key: “confirmation” 

Values: True, False 

Description: Used to determine a yes/no response by the user. 

 

Key: “no_category” 

Values: Any station, date, or time that is valid but the details are uncertain for 

Description: Used to extract information when the details are not clear. For example, in the case of 
single statement input since NLP does not maintain any knowledge of the state. 

 

Key: “suggestion” 

Values: A key value pair where the key is either “station” or “location” and the values are either any 
valid station from the database, or any valid location from the database 

Description: Used by the fuzzy matching function in the case of invalid input to try to determine the best 
guess to the user’s intent. 

 

Key: “sanitized_message” 

Values: A lowercase text string containing the user message with no punctuation and spelling mistakes 
resolved 

Description: Processed user input to remove all invalid characters and spelling mistakes. Used mostly for 
historical purposes. 

 

Key: “raw_message” 

Values: Raw user message  

Description: Raw input from the user before any processing 

 



   
 

   
 

Techniques and Tools  
Spacy 
Spacy (Spacy.io, 2021) is a popular and well-regarded Natural Language Processing toolkit designed for 
production use that quickly performs a variety of techniques, including Tokenization, Parts-of-speech 
Tagging, Named Entity Recognition (NER), Lemmatization, Rule-based Matching, and more. It is the 
primary tool used by the NLP functionality of the chatbot.  In this application, it is primarily used for its 
pattern matching and dependency parsing capabilities. 

 

Figure 21: Spacy Processing Pipeline 

 

Spacy’s PhraseMatcher allows individual tokens or groups of tokens containing specific text to be found 
inside a given processed Spacy document. This allows the NLP to search for specific information. For 
example, if the user enters: “I want to travel to london”, a rule specifying user intent could match the 
word “travel” and deduce the user wants to buy a ticket. This is effective for matching key words that 
will not overlap but complex queries require more processing.  

Spacy parts-of-speech tagging and dependency parsing allows more complex rules and extraction of 
information by determining the relationship between specific tokens. This is visualised in Figure (X) 
below for the previous example phrase: “I want to travel to London” and from this it can be seen that 
“tomorrow” is a dependency of “travel”, or that travel is the “head” token for “tomorrow”. This 
relationship allows the NLP functions to work out which parts of the information are connected, and in 
this example an outgoing journey date of tomorrow’s date would be set with the destination of London. 

 

Figure 22: Displacy Dependancy Visualisation 

Spacy’s Lemmatizer was also used to perform lemmatization on the user input to reduce complexity of 
the implementation of the PhraseMatcher. This reduces the variances on matched words to their base 
form. For example, “returning” becomes “return”. Spacy’s PhraseMatcher does allow lemmatization to 
be performed while matching, however, when this option was used performance suffered greatly. A run 



   
 

   
 

of 24 unit tests took 545.141s with this option enabled and only 20.796s with it disabled. A solution was 
to pre-process the user input using Spacy’s lemmatizer and running the PhraseMatcher on that instead. 
This reduced the run time to 33.901s.  

Named Entity Recognition was not used as this was not able to function for single word entry use-cases. 

 

Fuzzywuzzy 
Fuzzywuzzy (Gareth,  et al, 2020) performs fuzzy matching using Levenshtein Distance to find similarities 
between different text sources. This is used to try to match incorrectly entered station names or 
locations by comparing the entered words with the known stations and locations from the database.  

Datefinder 
Datefinder (Koumijan, 2015) is a python library used to create datetime objects from textual dates. It is 
used to extract all valid dates from the user input. Due to an implementation problem in datefinder 
certain dates are returned by default in US format and for relative dates such as “today” and 
“tomorrow” must be first processed into DD/MM/YYYY format to compensate for this.  

Spellchecker 
Spellchecker (Barrus, 2018) is a python library used to correct common spelling errors in English 
language text sources. Additional words can be added to its vocabulary, allowing stations and locations 
from the database to be correctly fixed. Combined with fuzzy matching this further increases the 
chances that errors can be accounted for. 



   
 

   
 

Implementation Flowchart 

 

Figure 23: Flowchart of NLP’s Main Process 

 

Testing 
Because the required output was known ahead of time NLP was perfect for a test-driven development 
style approach. Unit tests were made with the required output ahead of the required code. After every 
major change or additional feature in development, all tests were re-run and any problems could be 



   
 

   
 

detected immediately.  Twenty-four unit tests were used in developing NLP.py and can be found in 
test_nlp.py. A selection of four unit tests are shown below as examples. 

 

Figure 24: Unit Test for User Intent 

 

Figure 25: Unit Test for Date Extraction 



   
 

   
 

 

Figure 26: Unit Test for Short Query with Errors 

 

Figure 27: Unit Test for Input Sanitisation 

 

Knowledgebase & Inference Engine 
This section of the chat bot handles the user’s response from the NLP, processes the information the 
NLP has given to generate valid feedback for the user. 

 

Process 
To build a reasoning engine, we must make a choice in which expert system we would like to 
incorporate into our chat bot. The first option we tired for was PyKe, PyKe is a knowledge engine that is 
heavily inspired by the language Prolog, in order to fully make use of the engine we must understand 
how it works and how it will be integrated with the rest of the components. Unfortunately, we were not 
able to figure out how to use PyKe effectively with the given deadline set for the inference engine, the 
engine was somewhat difficult to understand due to the language it takes after, and the lack of 
examples did not help as this was not a very popular engine. However, we’ve learnt the uses of forward 
and backward chaining and how the inference engine should operate. We then turned to a newer 
knowledge engine, Pyknow, it was also known as Experta before, we had a lot of success in using 
Pyknow thus it allowed us to develop a knowledge engine suited towards answering train ticket queries.  

It also came apparent that the knowledgebase is built off what the user has entered, thus we consider 
the knowledgebase and inference engine as one thing. Validation is also used to filter out information 



   
 

   
 

that should or should not be in the knowledgebase, if the user enters incorrect information they should 
then be prompted for the correct input before proceeding to the next query. The inference engine we 
built only uses forward chaining to derive appropriate answers for the end user as finding delays or 
tickets is a data driven approach, an example for providing train tickets is to continually query the user 
to enter appropriate details about their journey until the engine reaches its goal of finding a ticket. 

 

Implementation 
During the early stages of development for the engine, the NLP was not ready to be used so we took the 
approach of working through the console to build the structure of the chat flow. All rules followed this 
structure for implementation, prompting us for an input from the user through the console and using a 
while loop to keep the user there until the correct information is given. The issues with this would be 
typing out the specific case needed for the engine to run, despite it not being the best solution in 
developing the engine it allowed us to make placeholders for further changes. 

 

Figure 28: First Iteration, no NLP integrated, use of print statements to get an idea of how the expert system should run 

It was also decided that certain validations should be done within the reasoning engine as it is regarded 
as the center of the bot due to it handling responses from a user; information such as ticket dates, 
times, and station names should be thoroughly checked for any errors before proceeding to the next 
query. The NLP was also integrated in figure 20 so the engine does not need a specific string or cases to 
navigate through the engine, every time a user enters a message the NLP will send a dictionary to the 
reasoning engine to then digest that response and give back an appropriate feedback to the user. 



   
 

   
 

 

Figure 29: Second Iteration, NLP integrated, using validation to check for the appropriate location 

 

Figure 30: Second Iteration, expert system suggests an appropriate location for the user 

 



   
 

   
 

We also found that the knowledgebase can be a separate dictionary and can be built on the fly when 
querying users, every time the user enters something meaningful in that instance the knowledgebase 
updates its dictionary so it remembers where the conversation is at appropriately. Figure 22 shows that 
every time a new dictionary comes from the NLP the current information that was already stored is 
declared again thus making it seem like the conversation has not stopped. 

 

Figure 31: Second Iteration, using validation to check for the appropriate location 

A dictionary of lists of feedback responses was made to incorporate a more natural feel of the 
conversation so the end user is not prompted with the same dialog. Figure 23 shows some of the 
possible outcomes for the user. 



   
 

   
 

 

Figure 32: Second Iteration, list of different types of responses 

Dates can either be categorised in outward_date or no_category or return_date depending on how the 
NLP interprets it. For more information about the NLP please  



   
 

   
 

 

Figure 33: Final Iteration,  

 

 

 

 

Testing 
A unit test could not be done within our test directory, so we decided to test the reasoning engine using 
people who do not have any prior knowledge of the bot to give their feedback and uncover bugs we did 
not realise. We also tested it ourselves, creating specific case scenarios for the reasoning engine to 
handle. 

Here is a list of bugs our users have identified and have been fixed: 

• Bot suggests same location as was typed. I want to travel, London Liverpool street, “Did you 
mean London Liverpool Street”. Was in no category. Possible to just check case insensitive 
matching before asking, or word similarity, or compare no category with suggestion  

• Bot did not understand yes or no after asking to confirm station / incorrect info “Did you mean 
London Liverpool Street?”, yes, “I did not understand…”.  

• Typing “i want to travel to london liverpool street” does not give any response 



   
 

   
 

• Bot did not pick up on return despite being in dict. “I would like to book a ticket from Norwich to 
Forest Gate on 2021/09/09 at 12:00 and returning on 2021/09/09 at 8pm”, “Will you return?” 

• “i want to travel from norwich to kent”, The station you would like to arrive at share similar 
names with the location you entered, here is a list a of possible stations you may be referring to: 
Tonbridge, Ashford International, Sevenoaks, Dartford, Tunbridge Wells. Not a bug but could say 
something more informative like “here is a list of stations in kent” 

• “Please confirm your booking... 
Departure datetime: 2021-02-01 at 18:00 
Departing from: Norwich 
Arriving at: London Liverpool Street”. “no”, “Please respond appropriately” 

• Issue with the final / next transaction. “What else can I help you with?” “Ticket” “Is there 
anything else I can help with”. Does not seem to recognise this. “no” works but this does not 
make sense for proper language. 

• “What station are you travelling to?” “Forest gayt” “Did you mean Forest Gate?” “What station 
are you travelling to”. Same response fired and confirmation does not work 

Person A1: Wants to book a single ticket step by step, making no mistakes  

Expected outcome: Each response by the bot is appropriate, reaching to the goal of a train ticket 

Observed outcome:

 



   
 

   
 

 

 



   
 

   
 

 

Person A2: Wants to book a return ticket step by step, making no mistakes  

Expected outcome: Each response by the bot is appropriate, reaching to the goal of a return train ticket 

Observed outcome: 



   
 

   
 

 

 

Person B: Wants to book a single ticket in a single query 



   
 

   
 

Expected outcome: The bot responding with a confirmation of all the details correctly matching what 
the user entered  

Observed outcome: 

 

Person C: Wants to book tickets step by step but makes mistakes in typing 

Expected outcome: User should be corrected/suggested alternative answers at any stage of the booking 
process 

Observed outcome: 



   
 

   
 

 

 



   
 

   
 

Person D: Wants to book tickets in a single query but makes a spelling mistake 

Expected outcome: The spelling mistake is caught and the user is prompted to enter the information 
correctly 

Observed outcome: 

 

Person E: Wants to book tickets but does not know the destination station 

Expected outcome: If the user knows the location/county of the station the bot would then suggest the 
top 5 most popular results for that county 

Observed outcome: 



   
 

   
 

 

Person F: Wants to book tickets but changes their mind and needs to change their travel date / time 

Expected outcome: The user can pick an option to change their ticket information 

Observed outcome: 



   
 

   
 

 

Person G: Asks cancellation info 

Expected outcome: The bot would reply with a link directing them to more information about cancelling 
their tickets 

Observed outcome: 

 

Person H: Needs help using the bot 



   
 

   
 

Expected outcome: The bot would offer advice on how to book tickets and give an example the user 
requires further assistance 

Observed outcome: 

 



   
 

   
 

 

Person I: Want to check delays on their journey step by step 

Expected outcome: The user can either enter the  

Observed outcome: 



   
 

   
 

 

 



   
 

   
 

 

Person J: Want to check delays on their journey in a single query 

Expected outcome: The user can either enter the  

Observed outcome: 

 

Person K: Asks for help regarding changing tickets 

Expected outcome: The user would be directed to a link with further information about changing their 
purchased ticket 

Observed outcome: 



   
 

   
 

 

 

Evaluation 
Due to the lack of experience using PyKnow, the approach taken in developing the engine has certain 
drawbacks. We believe that the rules for the questions and answers could have been reworked in a 
different style thus leaving the piece of code in a more maintainable fashion for individuals who would 
want to understand it or even make use of it. Currently, the engine receives a dictionary of the 
processed input from the user, that information passes through the corresponding query, however, that 
same information is also passed onto the next query if validation is successful. A change can be made; 
however, a huge overhaul of the reasoning engine must be done for it to be functioning at the same 
level as what we have currently. A solution to this inconvenience in the code can be splitting the query 
into two separate rules to prevent the previous information trickling into the next set of queries. 

The reasoning engine may have also been developed earlier if we knew how much the NLP is closely 
interlinked with the reasoning engine. Most of the critical components for the engine were only 
developed after the NLP was ready to be used, thus implying that if we had figured earlier what major 
components of the chat bot should have higher priority in development then the reasoning engine could 
have possibly spent more time in being finer tuned towards answering train ticket/delay queries. 

 

Delay Prediction Models 
Process 
The first decision we made was to create separate models for each station as opposed to one single 
model for the entire network. Although this is a little more complex than an entire route model, it would 
mean the system would be easily expandable in the future should more stations be tested, without 
affecting the accuracy of previously modelled stations. We decided to start with a designing a KNN 
model as it is relatively simple to test, we chose to do this testing in a Jupyter notebook as this makes it 
easier to change and keep track of values and make quick changes to the model as we go. 



   
 

   
 

Our initial dataset was all the rdg data provided through nrch-livst-test-data, plus all the a51 data from 
August 2018 to March 2019. we processed this data to remove much of it and encode categorical 
columns to numerical ones. The details we selected for this test were the day of the week (1-7), 
weekday (0, 1), off-peak (0, 1), hour of day (0-23) and delay (approximately -10 to 60). 

KNN Model 
For our first attempt, we wanted to use a classification algorithm and decided on KNN as it is simple to 
test, being a form of lazy learning algorithm, and our dataset has relatively low dimensionality. Firstly, 
we decided to see how accurately we could find the delay time for trains coming into Stratford (STFD) 
and heading for Bethnal Green (BTHNLGR). We loaded our dataframe with 10027 matching entries from 
the database. 

We selected delay as the label (y) and the remaining numerical columns as our attributes, then split the 
dataset 90/10 (training, testing). We chose those attributes previously since they were easily obtainable 
from the data we had collected, and the split was chosen due to feeling the more training data we have, 
the more accurate the model may be. Since there is no way to train the model based off of the testing 
data, we wanted to ensure the model had as much data as possible to work with. 

We scaled the attributes using sklearn’s StandardScaler preprocessor to ensure each attribute has a 
proportional contribution to the final distance, applied the KNN classifier with a starting K value of 5 and 
made the predictions. For evaluation, we created a confusion matrix and classification report, the totals 
of which you can find below. 

 

An accuracy of 0.14 is quite poor, it tells us that only 14% of the test data was correctly predicted by the 
model. Although we do not expect a huge amount of accuracy in the results, it feels like random 
sampling would get just as close as this. we decided to see if changing the value of K between 1 and 100 
would have any effect on this result and plotted the results to a graph as shown below. 



   
 

   
 

 

From this we can tell that the best K value for our dataset is probably around 50, but that still only gives 
us an accuracy of around 19%. Although 19% is quite a bit more accurate than the previous 14% (a gain 
of around 35%), we feel we can make further improvements. 

Evaluation of the KNN Model 
The model seems to work, but not very well. We feel this is down to the data set being flawed more 
than the model, but we will be adjusting both. We will reset K to 10 as default, since that should be a 
good starting point with this volume of data but will again try to find the best K value using the same 
technique used on KNN, on KNN2. We realised from looking at our test data that entries for London 
Liverpool Street were accidently left out due to a programming error in what data should be loaded 
from CSV, so we will change the data loading system to include these. we will also be adding a new 
attribute, delay_change, which will be the difference between the previous delay value and the new 
delay. We will then adjust the model to use delay_change as our label and delay will become another 
attribute. We are testing this change since we feel if we compare the current delay time with the other 
factors, we may be able to find a pattern in the change of delay e.g., do all trains that came into station 
X 5 minutes late gain the same amount of time between arriving at station X and arriving at stop Y? 

KNN Model 2 
After making the changes to the data and model noted above, we re-ran the KNN model, using a 90/10 
training/testing split and a K value of 10. The following table shows the results given from the 
classification report: 

value precision recall f1-score support 
-1440 0.00 0.00 0.00 2 
-1439 0.12 0.33 0.18 3 
-1438 0.00 0.00 0.00 2 
-1436 0.00 0.00 0.00 1 
-1435 0.00 0.00 0.00 1 
-1433 0.00 0.00 0.00 1 



   
 

   
 

-17 0.00 0.00 0.00 1 
-7 0.00 0.00 0.00 1 
-5 0.00 0.00 0.00 1 
-4 0.00 0.00 0.00 2 
-3 0.00 0.00 0.00 2 
-2 0.00 0.00 0.00 11 
-1 0.16 0.06 0.09 136 
0 0.41 0.63 0.50 837 
1 0.31 0.35 0.33 582 
2 0.23 0.14 0.17 407 
3 0.20 0.07 0.11 191 
4 0.10 0.03 0.05 98 
5 0.05 0.02 0.03 47 
6 0.00 0.00 0.00 14 
7 0.00 0.00 0.00 8 
8 0.00 0.00 0.00 2 
10 0.00 0.00 0.00 1 
14 0.00 0.00 0.00 1 
16 0.00 0.00 0.00 1 
18 0.00 0.00 0.00 1 
24 0.00 0.00 0.00 1 
27 0.00 0.00 0.00 1 
28 0.00 0.00 0.00 1 
32 0.00 0.00 0.00 1 
1439 0.00 0.00 0.00 1 
     
accuracy    0.34 2359 
macro avg 0.05 0.05 0.05 2359 
weighted avg 0.29 0.34 0.30 2359 

 

An accuracy of 34% is a notable improvement, even without adjusting the K value, however we are now 
concerned about the unusual values being generated outside of -17 to 32. These indicate that there was 
probably an issue with trains travelling from one day to another, as 1440 minutes is 24 hours, and most 
of these extreme values are close to this. Since these outliers only account for 11 values in 2359 (around 
half a percent), it is not a major issue at this point but will be investigated a little later. Focusing on the K 
value for now, we conduct a similar test to before, testing all K values between 1 and 100, measuring 
the accuracy of the output and mapping the results to a graph, which gave the following result. 



   
 

   
 

 

We can see that with a K value of 30, the mean error reduces to approximately 0.65, which is reasonable 
considering that we are attempting to predict future events based off collected data. Though it should 
be noted that for a K value between 11 and 100, the error only varies by 0.03 at most, with only a slight 
trend towards error reduction.  

Removing all zero values for delay_change in our data set results in an accuracy change of less than one 
percent. We found that changing the distance metric from Euclidian to Manhattan gives us a similar 
pattern when testing values of K between 1 and 100, though it appears that across the board the mean 
error drops by approximately 0.01. Whether this is an artifact from this dataset or not remains to be 
seen, but for now we will continue to use the Manhattan Distance metric. Interestingly, this also turned 
the R-squared value from negative (as it was in the previous two tests) to positive, giving a value of 
0.4988. This means that almost 50% of the variability in the delay change variable has been accounted 
for in the model, which sounds very reasonable. 

We decided to check another couple stations on the network to see if the prediction would have a 
similar accuracy. For our first test, we chose Ipswich to Manningtree since it is further up the line, where 
we imagine there will not be quite as much variance in the delays. This gave a much greater change in 
the results, with an accuracy of 0.49 – almost half correct guesses! Since there are no trains that pass-
through Ipswich into London after 23:59, we did not have as many outliers this time, though there were 
4 trains that had the maximum delay increase of 30 minutes between the previous stop and Ipswich that 
were never correctly guessed, which makes sense since it would be almost impossible to guess if a 
particular train would break down between two specific stops – if our model could predict that, we’d be 
very rich indeed. 

The second journey to check on this model was Diss to Stowmarket, which is very early on in the 
journey. We expected to get quite a high accuracy for this stop since it seemed it would be quite rare 
that the trains would be running late so early into the journey, and we were correct. We had an 
accuracy of 0.70, though there were only three differing values of delay_change, -1, 0 or 1 minutes, and 
the majority of those were 0 indicating no difference in the delay. 



   
 

   
 

Evaluation of KNN Model 2 
This model performed much better than the first due to changing the label (y value) and making changes 
to the underlying data set. We did find that in our tests of trains at Stratford, there were large outliers 
due to the day changing – this is a bug that will need to be fixed in the dataset before revaluation. 
Overall, we are happy with the performance of the KNN2 model and have decided to add it to the main 
project to test its accuracy on a set of journeys and see how reasonable the answers it gives are when 
presented with a real-world scenario as presented by the user. 

There appear to be further anomalies with the dataset such as with RID code 201702077101431, which 
give large delay times due to miscalculation by DARWIN. To combat this, we will limit the delay to 30 
minutes when parsing the data. In addition, our system requires modification to allow for accepting data 
from trains travelling from London to Norwich as well as further data to complete 2019 and data on 
Sunday trains, which requires scraping and additional data acquisition systems to convert HSP data to 
the DARWIN format. 

KNN Model 3 
Following the analysis of KNN2 we added the further data to the model – 9 months of weekday + 
Saturday trains plus three years of Sunday trains - to see if this had any effect on the results. We also 
removed any non-station data from the given (nrch-livst-test-data) dataset and re-ran our data loading 
scripts so that any data that used to point to a passing point (such as Bethnal Green) now pointed to a 
station (in this case, London Liverpool Street). It is possible we lost a small amount of accuracy in our 
model though this change, but it was necessary to accurately add the scraped HSP data to our dataset. 

A comparison of the KNN2 and KNN3 models are listed on the below table. Sadly, we did not take as 
much information as we would like from KNN2 before changing the dataset, so we only have the 
accuracy score to go off of. To compute the new R-squared, MSE and RMSE values, we ran the model on 
the dataset one hundred times splitting it differently each time to ensure a fair average. 

Dataset Source 
Station 

Destination 
Station 

Accuracy Average  
R-squared 

Average 
MSE 

Average 
RMSE 

KNN2 Diss Stowmarket 0.7043 - - - 
KNN3 Diss Stowmarket 0.6108 0.0893 4.7686 2.1837 
KNN2 Ipswich Manningtree 0.4931 - - - 
KNN3 Ipswich Manningtree 0.4120 0.0625 5.7086 2.3893 
KNN2 Stratford Bow Junction 0.3394 0.4988 - - 
KNN3 Stratford Liverpool St. 0.2377 -0.0762 12.1284 3.4826 
KNN3 Stratford Shenfield 0.5221 0.1838 7.5487 2.7475 
KNN3 Manningtree Ipswich 0.4547 -0.0323 6.9748 2.6410 
KNN3 Diss Norwich 0.5029 0.0171 3.8696 1.9671 

Bizarrely, with more data points our accuracy dropped on all three tests going towards London to far 
below where they were with the KNN2 model. What was also strange was that the trains modelled 
going towards Norwich had predictions that remained relatively stable across the network. We decided 
to evaluate the K-value again on the test from Stratford to Liverpool Street to see if having a larger K-
value would help give greater accuracy. 



   
 

   
 

 

The best K value is now at 40, but there is a lot more variation in the values compared to results in KNN2 
and moving to K=40 still only brings accuracy to 0.26, far short of the 0.34 previously noted. We 
considered that there may be an error with our import of data from HSP, but after checking multiple 
times, the data imported into the database appears correct and matches what was stored in the scraped 
CSV files. This difference in results has truly confused us, but we decided to continue testing other 
models in the hope that they would work better with the new data. 

Bayesian Ridge Regression Model 
We wanted to use a regression model second, to see if it gave a better result. Since regression gives an 
average of its neighbors rather than a specific value, it is likely this model will not be useful in this case, 
but we wished to test this. We ran the simulation again and created a plot from 450 entries of trains 
between Diss and Stowmarket, which can be seen in the below chart. 



   
 

   
 

 

We can clearly see from this that some inputs will result in drastic jumps in the change of delay, which 
may not be ideal for our scenario. We can also see that the prediction very rarely gives a reduction in 
delay. This is almost certainly due to the data not being narrowed down to just delayed trains, meaning 
the bulk of the data is assuming the train is coming into the station on-time. As mentioned before, we 
could select for only delayed trains, but this will then cause issues if our delay reduced to 0 minutes – 
there would be no data for the model to work with. We compared the results of our tests to the same 
tests performed on the KNN3 model above, once again running each model one hundred times per test 
for a fair average. 

Dataset Source 
Station 

Destination 
Station 

Accuracy Average R-
squared  

Average 
MSE 

Average 
RMSE 

KNN3 Diss Stowmarket 0.6108 0.0893 4.7686 2.1837 
BRR Diss Stowmarket - 0.0811 4.8051 2.1921 
KNN3 Ipswich Manningtree 0.4120 0.0625 5.7086 2.3893 
BRR Ipswich Manningtree - 0.1078 5.6067 2.3678 
KNN3 Stratford Liverpool St. 0.2377 -0.0762 12.1284 3.4826 
BRR Stratford Liverpool St. - 0.1705 9.5594 3.0918 
KNN3 Stratford Shenfield 0.5221 0.1838 7.5487 2.7475 
BRR Stratford Shenfield - 0.0611 8.2939 2.8799 
KNN3 Manningtree Ipswich 0.4547 -0.0323 6.9748 2.6410 
BRR Manningtree Ipswich - 0.0333 6.5167 2.5528 
KNN3 Diss Norwich 0.5029 0.0171 3.8696 1.9671 
BRR Diss Norwich - 0.0394 3.8515 1.9625 

 

Since it is not possible to get an accuracy score with a regression model, we must use the R-Squared and 
MSE/RMSE scores instead. We can see that this model performs very slightly better in most scenarios 



   
 

   
 

compared to KNN3, though the R-squared average is now increasing for trains heading towards London 
as the MSE increases, which means the variation is decreasing as the accuracy decreases which was not 
expected. Since regression is not categorical and gives us a floating-point value as an answer, we would 
need to interpret the value coming out the model as a categorical value. We could also see from our 
tests that the larger the delay we put in, the larger the prediction value would be, which infers that the 
more delayed a train is, the greater the delay will be after this stop, with no prior delay showing a result 
around 0.83. This shows that we will need to write an algorithm to smartly interpret the numbers 
coming out of the model to map them to an integer value, which will likely ruin the apparent gain in 
accuracy from using such a model. 

Evaluation of the Bayesian Ridge Regression Model 
As mentioned earlier, we had a possible issue with trains that were delayed for a time different from the 
current train was, which could be throwing out our estimates. We would try selecting different ranges of 
current delay from the database when building any future BRR model to see how that affects 
predictions. This would start to cause issues with storing models, of course, but we have decided since 
the models are taking up a lot of database space (we are already storing over 120MB of data, including 
50MB of KNN models) and each model takes only a fraction of a second to build with the data we have, 
we will not be storing and retrieving future models, but building them on-the-fly to evaluate each 
individual journey between two adjacent stations.  

After through but undocumented experimentation, we found that the complexity of building an 
accurate algorithm to interpret the floating-point result from this model as a specific value makes its use 
in this project unlikely, as time could better be spent looking at other models with may give a similar 
increase in accuracy, so we will leave our research on Bayesian Ridge here. 

Artificial Neural Network Model 
We wanted to try our hand at classifying via a Multi-layer Perceptron Classifier for our third model to 
see if a more complex model will result in more accurate results. Since this ANN is categorical, we will 
not have the issue faced with the Bayesian Ridge model as we can classify the change in delay as a single 
integer instead. We feel that outlier values may give us issues however, but this is something we will 
investigate later. For now, we decided on using 30% of the dataset for testing, as we can use 
backpropagation to ensure the model still learns from testing. We are using the Hyperbolic Tan (tanh) 
activation function and the default Adaptive Moment Estimation (Adam) optimisation algorithm across a 
maximum of five hundred epochs for our first try. 

We started by using the Diss to Stowmarket subset of data, testing a range of neurons in a single hidden 
layer from 1 to 10 to find the highest accuracy. These results are shown in the graph below. 



   
 

   
 

 

From this graph we can see the accuracy of the model levels out at around five or six nodes at 
approximately 64%. We compared the R-squared and MSE of these two models and found that five 
nodes had the more favorable error values, with an R-squared of 0.0716 and MSE of 4.8473 compared 
to 0.0551 and 4.9332 from six nodes. These results place the model around the same place as our 
previously tested models, slightly better in accuracy compared to KNN3 but with a lower R-score. 

A test using the logistic sigmoid activation function did not give any better results, with an accuracy of 
64% again, R-squared values of 0.0642 and 0.0499 for five and six nodes respectively, and MSEs of 
4.8856 and 4.9604. The models required a larger number of iterations to train however, so we decided 
to stick with tanh for now. We also tried changing the solver from the default Adam solver to a 
stochastic gradient descent (sgd) which resulted in an accuracy of only 62% at best, tests using the 
limited-memory BFGS (lbfgs) solver gave us similar results. Therefore, we will stick with the Adam solver 
from now on. 

Next, we wanted to see if adding a second hidden layer would give us better results. We decided to stick 
with testing five and six nodes on layer one and then tested between four and seven nodes on layer 
two. The results of these tests are shown below. 

Hidden 
Layer 1 

Hidden 
Layer 2 

Accuracy R-squared MSE 

5 4 0.6385 0.0515 4.9523 
5 5 0.6421 0.0916 4.7430 
5 6 0.6399 0.0624 4.8952 
5 7 0.6409 0.0660 4.8767 
6 4 0.6419 0.0689 4.8612 
6 5 0.6417 0.0835 4.7851 
6 6 0.6430 0.0539 4.9399 
6 7 0.6448 0.0667 4.8726 



   
 

   
 

From this we can see that the results are very similar to running a single layer, with a slight 
improvement in model (5, 5) with an R-squared raising to 0.0916 and MSE reducing to 4.7430 in this 
test. However, subsequent tests reveal this gain to be nullified by the random nature of the data, 
therefore we have decided that a single-layer model with five nodes would be best for further testing, as 
this is the fewest nodes we can use while maintaining accuracy. 

We then tested this model against the data previously used to test our other models to compare results. 
In previous tests we trained the model one hundred times however this would take around fifty times 
longer for ANN, so we settled for testing each model five times instead and taking the averages from 
each test. The results of these tests have been added to the below table. 

Dataset Source 
Station 

Destination 
Station 

Accuracy Average R-
squared  

Average 
MSE 

Average 
RMSE 

KNN3 Diss Stowmarket 0.6108 0.0893 4.7686 2.1837 
BRR Diss Stowmarket - 0.0811 4.8051 2.1921 
ANN Diss Stowmarket 0.6419 0.0676 4.6617 2.1591 
KNN3 Ipswich Manningtree 0.4120 0.0625 5.7086 2.3893 
BRR Ipswich Manningtree - 0.1078 5.6067 2.3678 
ANN Ipswich Manningtree 0.3965 0.1057 5.5348 2.3526 
KNN3 Stratford Liverpool St. 0.2377 -0.0762 12.1284 3.4826 
BRR Stratford Liverpool St. - 0.1705 9.5594 3.0918 
ANN Stratford Liverpool St. 0.2291 -0.0869 12.5282 3.5395 
KNN3 Stratford Shenfield 0.5221 0.1838 7.5487 2.7475 
BRR Stratford Shenfield - 0.0611 8.2939 2.8799 
ANN Stratford Shenfield 0.5432 0.1564 8.1705 2.8584 
KNN3 Manningtree Ipswich 0.4547 -0.0323 6.9748 2.6410 
BRR Manningtree Ipswich - 0.0333 6.5167 2.5528 
ANN Manningtree Ipswich 0.4340 0.0300 6.8938 2.6256 
KNN3 Diss Norwich 0.5029 0.0171 3.8696 1.9671 
BRR Diss Norwich - 0.0394 3.8515 1.9625 
ANN Diss Norwich 0.4952 0.0342 3.7269 1.9305 

 

As you can see, these results are all very close to the results gained from previous tests, generally within 
5% of the results from the two KNN models and the BRR model. This tells us that despite the complexity 
of the ANN model, and the additional processing time required to train it, the results are little to no 
better than the comparatively simple KNN3 model.  

Evaluation of the ANN Model 
Through testing the ANN model, we have already found the optimum layer and node size, activation 
function and solver. When looking at the classification reports for some tests, we wondered if reducing 
our data set to a limited range of changes in delay could result in a more accurate model. This is because 
larger delays are far more unpredictable as they are generally the result of unforeseen circumstances 
such as breakdowns or customer disturbances on the line rather than more predictable small delays 
such as waiting at track points for another train to pass or gains made in running the train faster and 



   
 

   
 

stopping for less time at each station. As such we have decided to make this change into a second ANN 
model and if the results are notable, to compare that model to previously tested models. 

ANN Model 2 
We started by doing a preliminary check on a journey from Ipswich to Manningtree only looking at 
journeys where the delay changed forward or backward by up to 5 minutes. From this test we found 
that although the accuracy stayed the same, there was a noticeable improvement in the R-squared and 
MSE values reported, showing that the incorrect guesses given in this model were closer to the correct 
values than with previous models. Therefore, we decided to do another run through the dataset shown 
previously to see how this model compares to the previous one. 

Dataset Source 
Station 

Destination 
Station 

Accuracy Average R-
squared  

Average 
MSE 

Average 
RMSE 

ANN Diss Stowmarket 0.6419 0.0676 4.6617 2.1591 
ANN2 Diss Stowmarket 0.6576 0.3260 0.7820 0.8843 
ANN Ipswich Manningtree 0.3965 0.1057 5.5348 2.3526 
ANN2 Ipswich Manningtree 0.4079 0.1862 1.6151 1.2708 
ANN Stratford Liverpool St. 0.2291 -0.0869 12.5282 3.5395 
ANN2 Stratford Liverpool St. 0.2558 -0.0730 3.4751 1.8642 
ANN Stratford Shenfield 0.5432 0.1564 8.1705 2.8584 
ANN2 Stratford Shenfield 0.5600 0.5841 0.7609 0.8723 
ANN Manningtree Ipswich 0.4340 0.0300 6.8938 2.6256 
ANN2 Manningtree Ipswich 0.4430 0.0748 1.1655 1.0796 
ANN Diss Norwich 0.4952 0.0342 3.7269 1.9305 
ANN2 Diss Norwich 0.5124 0.2760 0.8227 0.9070 

 

We can see that the change in dataset parameters to exclude changes in delays less than -5 minutes or 
more than 5 minutes results in a slight gain to accuracy but a clear noticeable improvement in the R-
squared and MSE values across the board. From this, we wondered if the same gains could be made to 
the KNN model using these data sets, since the change was in our selected dataset rather than in the 
model itself. A brief check on the Diss to Norwich journey showed a similar gain in both accuracy and 
error rate as seen with the change from ANN to ANN Model 2, therefore we will check one final time 
with a new KNN model with this new restriction. 

KNN Model 4 
We applied the same datasets used in ANN Model 2 to the previously built KNN3 model to create our 
final KNN model. The results of testing this model alongside ANN2 and KNN3 are listed below. 

Dataset Source 
Station 

Destination 
Station 

Accuracy Average R-
squared  

Average 
MSE 

Average 
RMSE 

KNN3 Diss Stowmarket 0.6108 0.0893 4.7686 2.1837 
ANN2 Diss Stowmarket 0.6576 0.3260 0.7820 0.8843 
KNN4 Diss Stowmarket 0.6219 0.3558 0.7573 0.8702 
KNN3 Ipswich Manningtree 0.4120 0.0625 5.7086 2.3893 
ANN2 Ipswich Manningtree 0.4079 0.1862 1.6151 1.2708 
KNN4 Ipswich Manningtree 0.4196 0.1159 1.7797 1.3340 



   
 

   
 

KNN3 Stratford Liverpool St. 0.2377 -0.0762 12.1284 3.4826 
ANN2 Stratford Liverpool St. 0.2558 -0.0730 3.4751 1.8642 
KNN4 Stratford Liverpool St. 0.2650 -0.2195 3.9284 1.9820 
KNN3 Stratford Shenfield 0.5221 0.1838 7.5487 2.7475 
ANN2 Stratford Shenfield 0.5600 0.5841 0.7609 0.8723 
KNN4 Stratford Shenfield 0.5370 0.5568 0.8144 0.9024 
KNN3 Manningtree Ipswich 0.4547 -0.0323 6.9748 2.6410 
ANN2 Manningtree Ipswich 0.4430 0.0748 1.1655 1.0796 
KNN4 Manningtree Ipswich 0.4617 0.0558 1.2015 1.0961 
KNN3 Diss Norwich 0.5029 0.0171 3.8696 1.9671 
ANN2 Diss Norwich 0.5124 0.2760 0.8227 0.9070 
KNN4 Diss Norwich 0.5117 0.2172 0.8960 0.9466 

 

From these samples we can see that this model performs comparably or better than any of the other 
models tested on similar datasets. Considering the KNN model requires much less processing than the 
ANN models for a similar or greater accuracy and lower error rate, this model seems like the natural 
choice for our project. We will still be creating and saving both models to our project, however. 

Model Implementation 
With testing concluded, we implemented the KNN4 model into our project. The model is generated 
ahead of time then saved into the database, stored in the network object of the rail line it is part of. 
When needed, it is loaded from the network object and used for prediction, meaning we do not need to 
build the model every time (though since each KNN4 model is relatively small at around 30,000 entries, 
this would not be an issue in general). For the final ANN model, we did the same, building the models 
ahead of time and storing them in the network object. These were more important to build ahead of 
time since they typically take 10-20 seconds per station to build, but the final model is only a couple 
dozen kilobytes. 

To use the chosen model, we can call data.process_data.user_to_query() providing the TPL code of the 
source and destination stations, as well as the current delay in minutes. This function then finds which 
network the two stations are on, joins a path between them, finds the current date and time and calls 
another function for each pair of stations on the path, which itself pulls the KNN4 model from the 
network object to find the change in delay using model.predict(data). These delays are then summed up 
across every set of stations, and the final delay is returned to the user. 

We have found a slight issue with this model in that sometimes there is not enough data on negative 
train delays (where trains are arriving early to station) to accurately predict what the change in delay 
will be going forward, which leaves the model under-estimating by many minutes. We looked at what 
could be changed in the model to help with this but ultimately decided on a simple workaround of 
ensuring the total delay never goes below -1. Although not the best fix in our opinion, it does accurately 
mirror how a train would work in the real-world, in that it would usually stop at a station until the 
correct leaving time or be stopped at a junction to allow another train to pass if it’s ahead of schedule. 

 



   
 

   
 

Conversation Control 

Implementation 
 

Testing 

Unit Testing 
Unit testing was carried out throughout the project to ensure any changes made to an individual 
component would not break that component, and ensure it is working correctly. For testing, we used 
the unittest library in Python, which comes with useful tools such as being able to check if values are 
within a given range, or that a piece of code if giving the correct error message when it fails. The unit 
tests can be found in the tests folder of the project. 

The models were built and tested in Jupyter notebooks, which can be found inside the model folder. 
These notebooks are not used by the program itself but were included to show how the models were 
tested and what data we looked at collecting. 

Integration Testing 
System Testing 
Usability Testing 
 

Evaluation 

Evaluation and Improvements to Datasets and Models 
The final version of our program allows for the use of both KNN and ANN models, however KNN appears 
to give far more realistic estimations based on our testing. Further experimentation with the ANN model 
may give us more realistic estimations from real-world data, but since we proved through testing that 
KNN is slightly more accurate with a smaller error, we decided to settle with using KNN. We chose not to 
implement the Bayesian model in our final program as we could not agree to an accurate algorithm to 
interpret the floating-point result as a categorical value, despite many hours of discussion and 
experimentation. We felt this was fine, however, as the BRR model did not outperform any other model 
by any reasonable extent during testing. We were also concerned that the BRR model would exceed the 
maximum database size allowable on GitHub (100MB) due to the size of the current KNN models being 
held. 

To possibly gain more accurate predictions, we could add the starting station for trains in the data set. 
Since some trains start at stations other than Norwich or London Liverpool Street (such as the weekday 
service from Ipswich to London Liverpool Street), they are likely not going to be delayed at the start of 
their journey compared to those that left at the track-end stations. This would require asking more 
information from the user, however, such as the origin station for the train or how many stations the 
train stopped at prior to the current station. We would also need to build new checks into the scripts 
that pull train data from the scraped CSV files. We felt that the complexity that this would add to the 
model and predictions would offset how useful that information could be. 



   
 

   
 

Accuracy in predicting the delay in data.process_data.user_to_query() could possibly be improved by 
changing the value of the now parameter based on how much time will pass after every station, 
however this would require reworking the current implementation for what was felt would be little gain 
in real terms.  

We spoke about including historical weather data into our model but after a few hours of study we 
concluded that it would likely not have a noticeable effect on train delays due to trains rarely being 
affected by a single weather event. For example, trains will continue to run when it is snowing unless 
the snow is deep, which would not be picked up easily from historical weather data and would account 
for so few delays across the measurement period that we felt it would be more likely to generate false 
positives than assist with correct guesses. 

 

Summary 
Due to unforeseen issues, the project took us longer to complete than we expected, however we feel 
our early planning allowed us to complete all the features we intended to add to the system before final 
submission. Although we were unable to complete much of the project by the timescales estimated on 
the Gantt Chart, we found that referring to that chart was still useful at our later meetings for planning 
around any issues and keeping the project moving forward. 

At points we found that the libraries we thought would be useful during the design stage were not as 
useful during production. For example, when attempting to use Scrapy to scrape for train tickets, we 
found issues in trying to parse the scraped data and through research we found the guides and 
documentation for Scrapy was somewhat lacking, along with being quite confusing for new users. We 
decided to drop the progress made on Scrapy and switch to BeautifulSoup which, although having less 
functionality, did everything we needed and had far better documentation – we managed to get further 
in two hours with BeautifulSoup than we had in eight hours with Scrapy. We learned from this that we 
should not be too worried about dropping a library or a piece of work we have spent time on if we think 
we can get a better result using something else. This was particularly important a little later when it 
came to the Knowledge Engine, as we found that PyKE was also a very difficult library to use, but we 
managed to make great strides in development by switching to Pyknow/Experta and using some of the 
knowledge gained from PyKE to inform us on how to move forward quickly. We feel that using the Rapid 
Application Development (RAD) methodology helped us here as we could quickly switch development 
without tying up other parts of the system or feeling like we would need to change the requirements of 
the project at all, as our changes fed back into the look at user design at our following meeting. 
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