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1 Introduction

A critical part of using Machine Learning algorithms is knowing how they are constructed and
how their performance is evaluated. In this paper we seek to refute the null hypothesis that a
tuned variant of the ID3CW Decision Tree classifier we have implemented shows no statistically
significant performance improvement compared to its predecessor and an un-tuned variant over
a range of problems. We will also investigate whether the TreeEnsemble ensemble shows a
statistically significant improvement over other classifiers on our chosen data set and a specific
case study data set.

We believe that we will see a statistically significant improvement in the performance of our
tuned classifiers over the un-tuned version. In general, this has been understood for many years,
Mu and Nandi (2007) demonstrated that automated parameter tuning improved breast cancer
diagnosis accuracy by 4.9%, and Gholap (2012) found an increase of 1.41% in the accuracy of
Weka’s J48 classifier after tuning. We feel that although the TreeEnsemble will produce better
results than ID3CW on its own (Budzik, 2019), when compared with more complex classifiers
it will likely fall behind due to lacking the improvements other classifiers have made in the past
35 years of Machine Learning research.

We will first explain the data sets we will be using, then give some information on the classifier
and ensemble before presenting the results of my experiments and discussing their meaning.

2 Data Description

We will be using two groups of data and a single case study to test our classifiers on. The first
group is a selection of 23 multivariate, categorical (discrete) data sets from the UCI Machine
Learning Repository (Dua and Graff, 2017), of which the characteristics are shown in Appendix
A.1. The second is a group of 36 multivariate, real-valued (continuous) data sets also from
the UCI Machine Learning Repository as described in Appendix A.2. My case-study data set is
MiddlePhalanxOutlineCorrect, from The UCR/UEA TSC archive (Bagnall et al., 2021), detailed
in Appendix A.3. The case study includes points of data from 891 xrays of a middle phalanx
bone from a middle finger and the estimation from a previous algorithm of where a box drawn
around that bone should be to contain the bone but not extend too far out. This task is to
classify whether the bounds were drawn correctly based off of classification of these estimations
by humans.

3 Classifier Description

The classifier designed for this paper is ID3CW, a variant of the ID3 classifier introduced by
Quinlan (1986). One modification allows the user to select the attribute selection mechanism the
classifier employs from Information Gain, Chi-Squared, Chi-Squared with Yates Correction and
Gini Coefficient. These can be defined by using the command line argument -C [criteria]
where [criteria] can be ig, chisquared, chisquaredyates or gini. The mechanism
can also be set from within a Java program by passing the above command as an argument to the
setOptions method of the ID3CW object before calling the buildClassifier method. By
default, the classifier will use Information Gain as the attribute selection mechanism. Another
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modification allows the classifier to handle continuous attributes by taking a random value from
that set of attributes and splitting the attribute across that value, then storing the value for
later classification on the test set instances.

We have also developed an ensemble classifier called TreeEnsemble which is a collection of
ID3CW classifiers that generate predictions via majority vote. By default TreeEnsemble builds
50 ID3CW classifiers, where each classifier selects a random attribute selection mechanism and a
random 50% subset of the attributes from the data set. All three of these settings can be modified
with the setNumClassifiers, setSplitMeasure and setSampledPercentage methods
on the TreeEnsemble object. Additionally, the setGiveProbability method can be set to
true to return the probability the selected class is correct rather than the name of the class.

For testing, we have chosen a selection of different classifiers implemented in the Weka (Frank
et al., 2009) toolkit:

• J48 - The Weka implementation of C4.5 (Quinlan, 2014), an extension of the ID3 algorithm
which handles continuous attributes, missing attribute values and includes tree pruning.

• Bagging - First noted by Breiman (1996), this is an ensemble that fits random subsets of
the data to a collection of REPTree classifiers and then collects their predictions through
voting to form a final prediction.

• Random Forest - Outlined by Breiman (2001), this is an ensemble classifier which is formed
of RandomTree classifiers, which randomly choose an attribute at each node and does not
perform pruning.

• Rotation Forest - Proposed by Rodriguez et al. (2006), this is a complex ensemble clas-
sifier which splits the given training data into multiple subsets, then performs Principle
Component Analysis (PCA) on each subset then using the features extracted from PCA
to form a new feature set. The training data is then transformed (Rotated) into the new
feature set, which a decision tree is trained on. Repeating this process with different splits
improves diversity and accuracy.

• LogitBoost - Proposed by Friedman et al. (2000), this classifier uses a boosting ensemble,
an algorithm which trains classifiers and then adds lower weights to trees that perform
poorly to train a final classifier. Specifically, LogitBoost modifies AdaBoost (a common
boosting algorithm) by using logistic regression as the cost function.

• DecisionStump - Rarely used on it’s own but often part of a boosting ensemble, this
classifier is a one-level decision tree which classifies data on only one attribute. We’re not
expecting this to perform very well.

4 Results

4.1 ID3CW Discrete

In the first experiment, we tested whether there was any difference in average accuracy of the
ID3CW classifier on the UCI Discrete group of data when tuning the attribute selection method,
and compared those classifiers to the accuracy of default ID3 and J48 classifiers. We ran each
experiment five times and averaged the accuracy values between those five runs. We expect
that at least one of the tuned versions of ID3CW should perform slightly better overall than the
default Information Gain (IG) version and that ID3CW with IG should perform almost exactly
the same as ID3. We also expect J48 to perform significantly better than all others in this
experiment. The results of this experiment are recorded in Appendix B.1. We can see from this
table that in general, all four versions of ID3CW performed almost identically on each dataset
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with the only differences being in molecular-promoters (variation in accuracy of 0.125), nursery
(variation of 0.097) and zoo (variation of 0.167). This was surprising as we expected at least one
classifier to perform better, or worse, than the others. We were also surprised to see that the ID3
algorithm performs significantly better or worse than our tuned ID3CW despite being almost
exactly the same as ID3CW splitting on Information Gain. Noteworthy data sets here include
balance-scale (where ID3CW-IG showed a 28.0% increase in average accuracy over ID3), chess-
krvk (where ID3 shows a 51.7% improvement over ID3CW-IG), led-display (where ID3 leads
by 63.4%), nursery (ID3 leads again by 27.2%), semeion (where ID3 leads by 69.2% ahead of
ID3CW-IG) and zoo, where ID3 beat our ID3CW-IG classifier by 31.2%. After seeing these
results we checked our test environment to ensure there were no abnormalities in the processing
of the data but could not understand why these datasets produced such large differences between
these two classifiers. As expected, the J48 classifier performed either as well as, or significantly
better than all ID3CW variants as well as ID3.

4.2 ID3CW Continuous

We then used the same set of classifiers against the continuous data set (except ID3, as it is
unable to handle continuous data) to see how well it performs over an average of 5 tests where
we split on different random instances each time. Given the results above we now believe that
all versions of ID3CW will perform similarly to each other, but J48 will perform equally or
much better than them in all cases. The results of this experiment are recorded in Appendix
B.2. We can see from the table that our assumptions this time are correct, that there are
only two datasets where one version of ID3CW performed significantly better than the others -
using Chi-Squared as the attribute selection mechanism on oocytes-trisopterus-states-5b and on
steel-plates (performing 5.0% and 14.3% better respectively than Information Gain, the second
closest). These results alone, however, are not enough to say that Chi-Squared is definitively
a better attribute selection mechanism than any other. Once again, J48 performed as well or
better than all variations of ID3CW on each data set. This is despite the normalisation criteria
(splitting randomly on a given value for each attribute) being the same for both ID3CW and
J48.

4.3 TreeEnsemble with Train-Test Split

Our third experiment tested variations of TreeEnsemble on the Discrete group of data and
compared their average accuracies across 5 tests with the data previously collected on the IG
variant of ID3CW. We expect to see all variants of TreeEnsemble to show equivalent or better
average accuracy than ID3CW across all datasets. We are also testing if there is any significant
difference between the different attribute selection mechanisms. We expect that TreeEnsemble
using a random attribute selection mechanism should have an average accuracy as a mean of the
set of accuracies from the other selection mechanisms. The results we retrieved can be found
in table 10. As expected, the TreeEnsemble variants performed as good or better than ID3CW
by itself. However, there were interesting differences to note. Firstly, TreeEnsemble performed
far better than ID3CW across the board on the habermans-survival dataset. This is possibly
because one of the three attributes in that set is not relevant to the class and causing the base
classifier to often mis-classify entries, and where TreeEnsemble removes attributes on each tree,
this attribute is probably being missed out of a majority of classifiers and therefore the majority
vote can find the correct classification. We could possibly find the same with balance-scale,
fertility, molecular-splice and pendigits, all of which showed significant improvement across
all TreeEnsemble variants compared to ID3CW. There is one single dataset that performed
significantly worse across the board compared to ID3CW, and that is Monks-1. We assume
for this dataset that there are a couple attributes that are fundamental to the class and that
by leaving out one or more of those attributes, the accuracy of the classifier is lost. There
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was an unusual result in the zoo data set, with the Information Gain version of TreeEnsemble
registering an average far below other classifiers, but from what we can see this is the result of
a large variance in results on that dataset across the board. This could be down to the fact
that zoo is very small dataset with only 100 entries, and therefore there was not enough training
data to build an accurate model for the test data. In regards to adjusting the attribute selection
mechanisms, there doesn’t appear to be a large variation between them, with Chi-Squared again
coming in slightly ahead of the other mechanisms on most data sets, particularly on the fertility,
molecular-splice, optdigits, semeion and zoo data sets. Gini appears a little worse across the
board, but not by a statistically significant margin.

We wanted to tune the parameters of our TreeEnsemble a little to see if that would improve the
accuracy of the results. Our first tuning was to set the attribute selection percentage to 100%
to see how this would change the result. Our expectation is that this will cause TreeEnsemble
to perform almost the same as ID3CW as there would be little to differentiate each classifier
within the ensemble. The results of this tuning can be found in table 12 of Appendix B. As
expected, there was an overall reduction in the accuracy of the models when all attributes are
selected on each classifier. However, there are two main points of interest in the data. The first
is that although the accuracy of TreeEnsemble has dropped slightly on habermans-survival, it is
still far ahead of the performance of ID3CW. This is possibly due to a rounding error in working
out how many attributes to include, which has possibly caused an attribute to be dropped. For
the fertility dataset, too, we are seeing a small reduction in the accuracy of TreeEnsemble over
default settings, but an increase in accuracy compared to ID3CW. The nursery and zoo datasets
continue to give wildly fluctuating results which doesn’t seem to be affected by the tuning of
the classifier.

Exploring tuning further, we decided to continue to use 50% as our attribute selection percentage
but increase the amount of classifiers in the ensemble by five times, to 250. Although this would
increase the processing time by a large amount, we hope that this would give us more accurate
predictions. The results of this experiment can be found in 14. As we can see from the results,
there are no statistically significant gains to accuracy from running more than 50 classifiers in a
TreeEnsemble. The only dataset that seemed benefit across the board was hayes-roth, however
this is likely a fluke due to the small number of instances (132), considering the variation we
observed in the sets of results.

To illustrate whether there is any advantage to using one of these classifiers over another, we have
constructed a Critical Difference diagram to illustrate the difference in the sum rank averages
between each of these classifiers, as found in figure 1. From this we can see that although
Chi-Squared performed the best out of all the classifiers, they are all within the same clique
meaning there is no statistically significant difference between them. Indeed, a Friedman Test
(Stangroom, n.d.) on this data returns a p-value of 0.0911, which is below our α of 0.05, meaning
there is no statistical significance.

Figure 1: A Critical Difference diagram comparing different versions of TreeEnsemble to ID3CW

Accuracy is only one measurement, however. To find how good this ensemble is, we must take
multiple measurements in a measured way and find other performance measures to compare it
to other algorithms.
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4.4 TreeEnsemble with Cross Validation

Cross validation is a process where a dataset is split into v different subsets (in our case ten)
and for each fold, one subset is held back for testing while the model is trained on the re-
maining v-1 subsets, up to fold v. This allows for higher accuracy for any classifier which is
unable to guarantee a perfect model (Browne, 2000). For this experiment, we will compare
the Chi-Squared variant of TreeEnsemble with J48, Bagging, Random Forest, Rotation Forest,
LogitBoost and DecisionStump on the UCI Discrete group of data. Due to the complexity of
these other classifiers, we expect TreeEnsemble to only beat DecisionStump, though we feel it
should likely rank close to Bagging and LogitBoost. Rather than present these results in a
table, we have constructed a Critical Difference Diagram as shown in figure 2. Here we can
see that TreeEnsemble performed better than DecisionStump but sadly still within the same
clique. Surprisingly, Bagging and LogitBoost were not in the same clique as TreeEnsemble - in
fact LogitBoost was in the same clique as RotationForest, the highest ranked classifier in this
experiment.

Figure 2: A Critical Difference diagram comparing TreeEnsemble-Chi to other existing classifiers

Looking at the data in depth, it would be tempting to remove fertility, habermans-survival and
spect-heart from the test data as the variation between each classifier is below 10% between
the best and worst performing classifier, meaning we’re not gaining any meaningful information
from these data. A test on this new dataset did show an improvement in the accuracy of
TreeEnsemble, however this would only artificially improve the score of our classifier as we’re
specifically picking datasets that help to show our classifier in the best light.

4.5 Classification of the Case Study

Using the above classifiers, we passed in the data from our case study. Due to the nature of
this problem, we’re looking for the maximum true positives and true negatives, indicating our
classifier can recognise both x-rays that have been bounded correctly, as well as ones that are
incorrectly bounded. Here, we are interested in the Balanced Accuracy. Where Accuracy takes
into account only the predictions we got correct, Balanced Accuracy takes an average which
includes the predictions we got incorrect, too. This allows us to account for the fact that there
were more cases given to us where the bounds were drawn correctly (554 vs 337). The relevant
performance measures across the tested classifiers can be found on Appendix 16. Here, we
find that TreeEnsemble appears to perform in line compared to the other classifiers aside from
DecisionStump, which was to be expected. A Negative Log Likelyhood (NLL) of 0.9339 tells
us that the model is quite confident when it is wrong, as much as DecisionStump is, which is
wrong far more often. An AUROC value of 0.749 tells us that in general, the classifier is finding
more true positives than it is finding false positives.

Generally speaking, to find if any of these differences between the classifier models are statis-
tically significant, we must take the balanced accuracy from each test for each classifier and
perform a Friedman Test against an α of 0.05. However, as we are performing tests only on
a single dataset, we must use the individual folds for testing which are not independent and
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therefore we can not draw any strong conclusions from our results. Indeed, the test gives an
incredibly small p-value of ¡0.0001, which would indicate major statistical significance between
the classifiers, which is likely true if you compare DecisionStump to RotationForest. We decided
to create a Critical Difference diagram on this finding, which can be found in figure 3, below.
Indeed, we have two cliques that largely overlap, but for this experiment at least, TreeEnsemble
performed in line with most of our other classifiers. The poor performance of TreeEnsemble on
continuous data is expected after discussing the performance of ID3CW earlier in this paper.

Figure 3: A Critical Difference diagram comparing our chosen classifiers on the MiddlePhalanx-
OutlineCorrect dataset

4.6 Case Study with Discretized Filter

For our final experiment, we hypothesized that if we Discretize the data into a binary split
before use, and use the same split on all classifiers, we will see a reduction in the performance
of the other classifiers to be more in line with TreeEnsemble. The results from this experiment
are presented in table 18. Once again we were surprised by the results - not only did the
discretization reduce the performance measures of the competing classifiers, but the quality
of TreeEnsemble rose by a reasonable margin to become the best performing classifier. The
increase in Balanced Accuracy to be comparable to Accuracy shows us that TreeEnsemble has
improved performance on problems with many classes or large class imbalances. The reduction
in NLL shows us that it is producing very good probability estimates, and the high AUROC
shows it is much better at ranking, now. A Critical Difference diagram on this data is shown in
figure 4 below. Although the margin is not enough to say TreeEnsemble is the best performing
classifier, it is in the same clique as RotationForest and Bagging, which also performed well.
This improvement in performance is likely due to the selection criteria of Discretize being of
higher quality than the one implemented in TreeEnsemble.

Figure 4: A Critical Difference diagram comparing our chosen classifiers on the Discretized
MiddlePhalanxOutlineCorrect dataset

5 Conclusions

Ideally we would have spent more time on tuning our classifiers, perhaps by trying different
combinations of classifier counts and lower attribute selection percentages to see if that could give
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a better result. The results from Discretization at the end of our paper open up the possibility
of revising this algorithm at a later date to use the filter rather than our own implementation.
Although we wanted our developed classifiers to do well, we feel we refrained from trying to
artificially increase their prediction quality in order to avoid bias in the results.

A case has been made by Benavoli et al. (2017) that it might be worth moving away from Null
Hypothesis Significance Tests and over to Bayesian tests instead, which were shown to be a
better fit for Machine Learning classifiers, but that is outside the scope of this particular paper.

We could also explore more robust ways to split data into individual classifiers within TreeEnsem-
ble. A random selection of x% of the attributes runs the risk of selecting a subset of attributes
multiple times, which could bias the results to those chosen attributes. This is obviously offset
by running the test multiple times, but it may be worth adding a flag option to TreeEnsemble
which, when set, will specify to select all subsets of data. The downside of this is that this would
require creating 2n classifiers, where n is the number of attributes in the set. For datasets of
50,000+ entries beyond 11 attributes, this begins to take a gigantic amount of time to process.
Another approach is to find all subsets of attributes at a given number of selections (k), which
would result in a selection of only

(
n
k

)
, which is much more reasonable, though still unwieldy for

sets such as molecular-splice, which could end up with
(
60
30

)
at its largest selection, or 1.18×1017,

clearly not feasible for any sized dataset! A hybrid system that could choose a number for k
based off of the number of attributes in the dataset could be an option, which then opens up
another path of research, if it’s better to create 495 trees of 4 attributes each from a set of 12
or 495 trees of 8 attributes from that same set? Would there be a difference in results at all?
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A Appendix A - Datasets Used in Evaluation

A.1 UCI Discrete Group

Data Set
Instances/
Attributes/
Classes

Class Distribution
Train/Test
Split

balance-scale 625 / 4 / 3 288 Left, 49 Balanced, 288 Right 437/188

chess-krvk 28056 / 6 / 18

2796 Draw, 78 One, 246 Two, 81 Three,
198 Four, 471 Five, 592 Six, 683 Seven,
1433 Eight, 1712 Nine, 1985 Ten, 2854
Eleven, 3597 Twelve, 4194 Thirteen, 4553
Fourteen, 2166 Fifteen, 390 Sixteen

19639/8417

chess-krvkp 3196 / 36 / 2 1669 Won, 1527 Nowin 2237/959

connect-4 67557 / 42 / 3 44473 Win, 16635 Loss, 6449 Draw 47289/20268

contraceptive-
method

1473 / 9 / 3
629 No-use, 333 Long-term, 511 Short-
term

1031/442

fertility 100 / 9 / 2 88 Normal, 12 Altered 70/30

habermans-
survival

306 / 3 / 2 225 Survived, 81 Died 214/92

hayes-roth 132 / 4 / 3 51 Class-1, 51 Class-2, 30 No-Class

led-display 500 / 7 / 10
45 Zero, 37 One, 51 Two, 57 Three, 52
Four, 52 Five, 47 Six, 57 Seven, 53 Eight,
49 Nine

350/150

lymphography 148 / 18 / 4
2 Normal-find, 81 Metastases, 61 Malign-
lymph, 4 Fibrosis

103/45

molecular-
promoters

106 / 57 / 2 53 Promoters, 53 Non-Promoters 74/32

molecular-
splice

3190 / 60 / 3 767 EI, 768 IE, 1655 N 2233/957

monks-1 556 / 6 / 2 278 Zero, 278 One 389/167

monks-2 601 / 6 / 2 395 Zero, 206 One 420/181

monks-3 554 / 6 / 2 266 Zero, 288 One 387/167

nursery 12960 / 8 / 5
4320 not recom, 2 recommend, 328
very recom, 4266 priority, 4044 spec prior

9072/3888

optdigits 5620 / 75 / 10
557 Zero, 571 One, 577 Two, 572 Three,
568 Four, 558 Five, 558 Six, 566 Seven,
554 Eight, 562 Nine

3934/1686

pendigits
10992 / 24 /
10

1143 Zero, 1143 One, 1144 Two, 1055
Three, 1144 Four, 1055 Five, 1056 Six,
1142 Seven, 1055 Eight, 1055 Nine

7694/3298

semeion
1593 / 257 /
10

161 Zero, 162 One, 159 Two, 159 Three,
161 Four, 159 Five, 161 Six, 158 Seven,
155 Eight, 158 Nine

1115/478

spect-heart 267 / 22 / 2 157 Zero, 110 One 186/80

tic-tac-toe 958 / 9 / 2 626 Positive, 332 Negative 670/288

zoo 101 / 17 / 7
41 Class-1, 20 Class-2, 5 Class-3, 13 Class-
4, 4 Class-5, 8 Class-6, 10 Class-7

70/31

Table 1: Data characteristics of the UCI Discrete group of datasets
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A.2 UCI Continuous Group

Data Set
Instances/
Attributes/
Classes

Class Distribution
Train/Test
Split

bank 4521 / 16 / 2 4000 Zero, 521 One 3164/1357

blood 748 / 4 / 2 570 Zero, 178 One 523/225

breast-cancer-
wisc-diag

569 / 30 / 2 357 Zero, 212 One 398/171

breast-tissue 106 / 9 / 6
21 Zero, 15 One, 18 Two, 16 Three, 14
Four, 22 Five

74/32

cardiotocography-
10clases

2126 / 21 / 10
384 Zero, 579 One, 53 Two, 81 Three, 72
Four, 332 Five, 252 Six, 107 Seven, 69
Eight, 197 Nine

1488/638

ecoli 336 / 7 / 8
143 Zero, 77 One, 52 Two, 35 Three, 20
Four 5 Five, 2 Six, 2 Seven

70/30

glass 214 / 9 / 6
70 Zero, 76 One, 17 Two, 13 Three, 9
Four, 29 Five

149/65

hill-valley 1212 / 100 / 2 605 Zero, 606 One 848/364

image-
segmentation

2310 / 18 / 7
330 Zero, 330 One, 330 Two, 330 Three,
330 Four, 330 Five, 330 Six

1617/693

ionosphere 351 / 33 / 2 126 Zero, 225 One 245/106

iris 150 / 4 / 3 50 Zero, 50 One, 50 Two 105/45

libras 360 / 90 / 15

24 Zero, 24 One, 24 Two, 24 Three, 24
Four, 24 Five, 24 Six, 24 Seven, 24 Eight,
24 Nine, 24 Ten, 24, Eleven, 24 Twelve,
24 Thirteen, 24 Fourteen

252/108

musk-2 6598 / 166 / 2 5580 Zero, 1018 One 4618/1980

oocytes
merluccius
nucleus 4d

1022 / 41 / 2 337 Zero, 685 One 715/307

oocytes
trisopterus
states 5b

912 / 32 / 3 525 Zero, 14 One, 373 Two 638/274

optical 5620 / 62 / 10
554 Zero, 571 One, 557 Two, 572 Three,
568 Four, 558 Five, 558 Six, 566 Seven,
554 Eight, 562 Nine

3934/1686

ozone 3536 / 72 / 2 2463 Zero, 73 One 1775/761

page-blocks 5473 / 10 / 5
4913 Zero, 329 One, 28 Two, 88 Three,
115 Four

3831/1642

parkinsons 195 / 22 / 2 48 Zero, 147 One 136/59

pendigits 10992 / 16 / 10
1143 Zero, 1143 One, 1144 Two, 1055
Three, 1144 Four, 1055 Five, 1056 Six,
1142 Seven, 1055 Eight, 1055 Nine

7694/3298

planning 182 / 12 / 2 130 Zero, 52 One 127/55

post-operative 90 / 8 / 3 64 Zero, 2 One, 24 Two 63/27

ringnorm 7400 / 20 / 2 3664 Zero, 3736 One 5180/2220

seeds 210 / 7 / 3 70 Zero, 70 One, 70 Two 147/63

spambase 4601 / 57 / 2 2788 Zero, 1813 One 3220/1381

statlog-image 2310 / 18 / 7
330 Zero, 330 One, 330 Two, 330 Three,
330 Four, 330 Five, 330 Six

1617/693
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continued from overleaf

Data Set
Instances/
Attributes/
Classes

Class Distribution
Train/Test
Split

statlog-landsat 6435 / 36 / 6
1533 Zero, 703 One, 1358 Two, 626 Three,
707 Four, 1508 Five

4504/1931

statlog-shuttle 58000 / 9 / 7
45586 Zero, 50 One, 171 Two, 8903 Three,
3267 Four, 10 Five, 13 Six

40600/17400

steel-plates 1941 / 27 / 7
158 Zero, 190 One, 391 Two, 72 Three, 55
Four, 402 Five, 673 Six

1358/583

synthetic-control 600 / 60 / 6
100 Zero, 100 One, 100 Two, 100 Three,
100 Four, 100 Five

420/180

twonorm 7400 / 20 / 2 3703 Zero, 3697 One 5180/2220

vertebral-column-
3clases

310 / 6 / 2 60 Zero, 100 One, 150 Two 217/93

wall-following 5456 / 24 / 4 2205 Zero, 826 One, 2097 Two, 328 Three 3819/1637

waveform-noise 5000 / 40 / 3 1692 Zero, 1653 One, 1655 Two 3500/1500

wine-quality-
white

4898 / 11 / 7
20 Zero, 163 One, 1457 Two, 2198 Three,
880 Four, 175 Five, 5 Six

3428/1470

yeast 1484 / 8 / 10
463 Zero, 429 One, 244 Two, 163 Three, 51
Four, 44 Five, 35 Six, 30 Seven, 20 Eight,
5 Nine

1038/446

Table 3: Data characteristics of the UCI Continuous group of datasets

A.3 MiddlePhalanxOutlineCorrect Dataset

Data Set
Instances/
Attributes/
Classes

Class Distribution
Train/Test
Split

MiddlePhalanx-
OutlineCorrect

891 / 80 / 2 337 Zero, 554 One 623/268

Table 4: Data characteristics of the MiddlePhalanxOutlineCorrect dataset
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B Appendix B - Evaluation Results

B.1 Testing ID3CW variants with UCI Discrete Data against ID3 and J48

Data Set
ID3CW-
IG

ID3CW-
Chi

ID3CW-
Yates

ID3CW-
Gini

J48 ID3

balance-scale 0.6310 0.6182 0.6374 0.6535 0.6545 0.4545

chess-krvk 0.1808 0.2121 0.1798 0.1788 0.5339 0.3740

chess-krvkp 0.9933 0.9941 0.9956 0.9937 0.9913 0.9939

connect-4 0.7379 0.7381 0.7386 0.7399 0.8001 0.7307

contraceptive-
method

0.4579 0.4344 0.4385 0.4502 0.4796 0.3756

fertility 0.7067 0.6867 0.7133 0.7134 0.8533 0.7267

habermans-
survival

0.3544 0.3696 0.3522 0.3804 0.7543 0.3652

hayes-roth 0.6000 0.5500 0.5650 0.5650 0.7050 0.6700

led-display 0.2520 0.2547 0.2466 0.2520 0.7000 0.6880

lymphography 0.5455 0.5364 0.5591 0.5227 0.7682 0.6818

molecular-
promoters

0.7562 0.7062 0.6312 0.6437 0.8375 0.7562

molecular-
splice

0.7198 0.7181 0.7101 0.6959 0.9381 0.8863

monks-1 0.9796 0.9748 0.9641 0.9605 0.9581 0.9832

monks-2 0.6000 0.6089 0.5889 0.6089 0.6489 0.6156

monks-3 0.9627 0.9675 0.9603 0.9651 0.9904 0.9687

nursery 0.7073 0.6105 0.6347 0.6321 0.9630 0.9713

optdigits 0.2694 0.2708 0.2599 0.2501 0.6045 0.4513

pendigits 0.3182 0.3482 0.3240 0.3292 0.5900 0.3605

semeion 0.2276 0.2569 0.2121 0.2310 0.7477 0.7402

spect-heart 0.6450 0.6575 0.6150 0.6600 0.7150 0.6875

tic-tac-toe 0.8425 0.8349 0.8153 0.8397 0.8502 0.8334

zoo 0.6333 0.7267 0.5600 0.6333 0.9067 0.9200

Table 6: Average accuracies from five runs of the given classifiers against the UCI Discrete group
of data

B.2 Testing ID3CW variants with UCI Continuous data against J48

Data Set
ID3CW-
IG

ID3CW-
Chi

ID3CW-
Yates

ID3CW-
Gini

J48

bank 0.8541 0.8572 0.8515 0.8517 0.8886

blood 0.7937 0.7688 0.7625 0.7812 0.7732

breast-cancer-
wisc-diag

0.9497 0.9380 0.9322 0.9415 0.9404

breast-tissue 0.3750 0.3750 0.3500 0.3625 0.6500

cardiotocography-
10clases

0.3724 0.4661 0.3972 0.3373 0.8254

ecoli 0.4198 0.5069 0.4514 0.4633 0.8079

glass 0.3969 0.4469 0.4375 0.4250 0.6688
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continued from overleaf

Data Set
ID3CW-
IG

ID3CW-
Chi

ID3CW-
Yates

ID3CW-
Gini

J48

hill-valley 0.5363 0.5033 0.5088 0.5242 0.4742

image-
segmentation

0.2880 0.3714 0.3463 0.3174 0.9431

ionosphere 0.8381 0.8876 0.8057 0.8381 0.8743

iris 0.7111 0.6800 0.7022 0.6578 0.9244

libras 0.0907 0.0981 0.0963 0.0963 0.6019

musk-2 0.9543 0.9564 0.9528 0.9539 0.9596

oocytes-
merluccius-
nucleus-4d

0.6964 0.6932 0.6918 0.6840 0.7505

oocytes-
trisopterus-
states-5b

0.7423 0.7810 0.7380 0.6912 0.8803

optical 0.2363 0.2572 0.2419 0.2480 0.8923

ozone 0.9469 0.9485 0.9516 0.9490 0.9622

page-blocks 0.8953 0.9056 0.8972 0.8984 0.9681

parkinsons 0.8966 0.8517 0.8448 0.8414 0.8517

pendigits 0.2710 0.2897 0.2420 0.2674 0.9550

planning 0.6218 0.6037 0.6473 0.6400 0.7309

post-operative 0.6444 0.6074 0.6148 0.6741 0.6889

ringnorm 0.8137 0.8049 0.8195 0.8234 0.9076

seeds 0.6254 0.6794 0.7079 0.6635 0.9270

spambase 0.9185 0.9126 0.9104 0.9077 0.9242

statlog-image 0.2750 0.2958 0.2811 0.2975 0.9544

statlog-landsat 0.5410 0.5126 0.4928 0.5056 0.8564

statlog-shuttle 0.7872 0.7974 0.7885 0.7863 0.9994

steel-plates 0.4333 0.5058 0.3914 0.4179 0.7326

synthetic-control 0.3400 0.3189 0.3433 0.3289 0.9045

twonorm 0.8497 0.8422 0.8506 0.8494 0.8446

vertebral-column-
3clases

0.7850 0.7699 0.7785 0.7871 0.7936

wall-following 0.4730 0.4484 0.5070 0.5309 0.9956

waveform-noise 0.6523 0.6643 0.6618 0.6497 0.7557

wine-quality-
white

0.4554 0.4696 0.4519 0.4475 0.5724

yeast 0.3083 0.3272 0.3061 0.3196 0.5600

Table 8: Average accuracies from five runs of the given classifiers against the UCI Continuous
group of data

B.3 Testing TreeEnsemble with Discrete data
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Data Set ID3CW
Tree-
Ensemble-
Random

Tree-
Ensemble-
IG

Tree-
Ensemble-
Chi

Tree-
Ensemble-
Yates

Tree-
Ensemble-
Gini

balance-scale 0.6310 0.8021 0.7904 0.8053 0.8022 0.7925

chess-krvk 0.1808 0.1987 0.1963 0.2096 0.1830 0.1886

chess-krvkp 0.9933 0.9610 0.9585 0.9583 0.9610 0.9545

connect-4 0.7379 0.7409 0.7383 0.7387 0.7389 0.7396

contraceptive-
method

0.4579 0.4991 0.5113 0.5000 0.5027 0.4932

fertility 0.7067 0.8267 0.8400 0.9200 0.8600 0.8600

habermans-
survival

0.3544 0.7544 0.7478 0.7283 0.7696 0.7457

hayes-roth 0.6000 0.5950 0.5700 0.5900 0.6100 0.5250

led-display 0.2520 0.2853 0.3387 0.3240 0.3867 0.2720

lymphography 0.5455 0.5864 0.5545 0.5318 0.6045 0.5682

molecular-
promoters

0.7562 0.8188 0.8000 0.8188 0.8375 0.8688

molecular-
splice

0.7198 0.8571 0.8201 0.8640 0.8182 0.8295

monks-1 0.9796 0.7222 0.7653 0.7784 0.6982 0.7341

monks-2 0.6000 0.6711 0.6433 0.6745 0.6844 0.6434

monks-3 0.9627 0.9361 0.9132 0.9060 0.9277 0.8988

nursery 0.7073 0.6250 0.6692 0.6308 0.7100 0.5885

optdigits 0.2694 0.3239 0.2741 0.3510 0.2944 0.2884

pendigits 0.3182 0.4979 0.4241 0.4445 0.3985 0.4231

semeion 0.2276 0.2469 0.2523 0.2870 0.2213 0.2389

spect-heart 0.6450 0.6925 0.7250 0.7200 0.7175 0.6825

tic-tac-toe 0.8425 0.8000 0.7575 0.7819 0.7722 0.7909

zoo 0.6333 0.5800 0.4333 0.6933 0.5933 0.5400

Table 10: Average accuracies from 5 runs of the given classifiers with default settings on the
UCI discrete group of data

Data Set ID3CW
Tree-
Ensemble-
Random

Tree-
Ensemble-
IG

Tree-
Ensemble-
Chi

Tree-
Ensemble-
Yates

Tree-
Ensemble-
Gini

balance-scale 0.6310 0.8021 0.8043 0.7872 0.7936 0.8043

chess-krvk 0.1808 0.1991 0.1885 0.2060 0.1929 0.1929

chess-krvkp 0.9933 0.9691 0.9712 0.9670 0.9696 0.9764

connect-4 0.7379 0.7348 0.7370 0.7366 0.7309 0.7368

contraceptive-
method

0.4579 0.4991 0.5149 0.5086 0.5104 0.5091

fertility 0.7067 0.9067 0.8467 0.8733 0.8867 0.8800

habermans-
survival

0.3544 0.7435 0.6848 0.7348 0.7326 0.7087

hayes-roth 0.6000 0.6350 0.6450 0.7100 0.6850 0.6200

led-display 0.2520 0.2600 0.2920 0.3066 0.2907 0.2720

lymphography 0.5455 0.5955 0.6455 0.5409 0.5409 0.5273
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Continued from overleaf

Data Set ID3CW
Tree-
Ensemble-
Random

Tree-
Ensemble-
IG

Tree-
Ensemble-
Chi

Tree-
Ensemble-
Yates

Tree-
Ensemble-
Gini

molecular-
promoters

0.7562 0.8375 0.8687 0.8625 0.8437 0.8438

molecular-
splice

0.7198 0.8495 0.8238 0.8711 0.8399 0.8391

monks-1 0.9796 0.7258 0.7293 0.7497 0.7461 0.7449

monks-2 0.6000 0.6422 0.6333 0.6600 0.6633 0.6522

monks-3 0.9627 0.8735 0.9024 0.9157 0.9337 0.9157

nursery 0.7073 0.6055 0.6504 0.6671 0.6568 0.6046

optdigits 0.2694 0.3050 0.2677 0.3448 0.2841 0.2699

pendigits 0.3182 0.4907 0.4375 0.4198 0.4224 0.4819

semeion 0.2276 0.2255 0.2376 0.2971 0.2034 0.2272

spect-heart 0.6450 0.6950 0.6750 0.6950 0.7275 0.7175

tic-tac-toe 0.8425 0.7958 0.8084 0.7819 0.7770 0.7826

zoo 0.6333 0.5333 0.4933 0.7733 0.5800 0.5067

Table 12: Average accuracies from 5 runs of the given classifiers with setSampledPercentage set
to 100 on the UCI discrete group of data

Data Set ID3CW
Tree-
Ensemble-
Random

Tree-
Ensemble-
IG

Tree-
Ensemble-
Chi

Tree-
Ensemble-
Yates

Tree-
Ensemble-
Gini

balance-scale 0.6310 0.8021 0.8043 0.7872 0.7936 0.8043

chess-krvk 0.1808 0.1991 0.1885 0.2060 0.1929 0.1929

chess-krvkp 0.9933 0.9691 0.9712 0.9670 0.9696 0.9764

connect-4 0.7379 0.7348 0.7370 0.7366 0.7309 0.7368

contraceptive-
method

0.4579 0.4991 0.5149 0.5086 0.5104 0.5091

fertility 0.7067 0.9067 0.8467 0.8733 0.8867 0.8800

habermans-
survival

0.3544 0.7435 0.6848 0.7348 0.7326 0.7087

hayes-roth 0.6000 0.6350 0.6450 0.7100 0.6850 0.6200

led-display 0.2520 0.2600 0.2920 0.3066 0.2907 0.2720

lymphography 0.5455 0.5955 0.6455 0.5409 0.5409 0.5273

molecular-
promoters

0.7562 0.8375 0.8687 0.8625 0.8437 0.8438

molecular-
splice

0.7198 0.8495 0.8238 0.8711 0.8399 0.8391

monks-1 0.9796 0.7258 0.7293 0.7497 0.7461 0.7449

monks-2 0.6000 0.6422 0.6333 0.6600 0.6633 0.6522

monks-3 0.9627 0.8735 0.9024 0.9157 0.9337 0.9157

nursery 0.7073 0.6055 0.6504 0.6671 0.6568 0.6046

optdigits 0.2694 0.3050 0.2677 0.3448 0.2841 0.2699

pendigits 0.3182 0.4907 0.4375 0.4198 0.4224 0.4819

semeion 0.2276 0.2255 0.2376 0.2971 0.2034 0.2272

spect-heart 0.6450 0.6950 0.6750 0.6950 0.7275 0.7175
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Continued from overleaf

Data Set ID3CW
Tree-
Ensemble-
Random

Tree-
Ensemble-
IG

Tree-
Ensemble-
Chi

Tree-
Ensemble-
Yates

Tree-
Ensemble-
Gini

tic-tac-toe 0.8425 0.7958 0.8084 0.7819 0.7770 0.7826

zoo 0.6333 0.5333 0.4933 0.7733 0.5800 0.5067

Table 14: Average accuracies from 5 runs of the given classifiers with setNumClassifiers set to
250 on the UCI discrete group of data

B.4 Testing Ensemble classifiers against the Case Study dataset

Classifier Accuracy
Balanced
Accuracy

Negative
Log Like-
lyhood

AUROC

TreeEnsemble 0.7565 0.7052 0.9339 0.7490

J48 0.7487 0.7261 1.4766 0.7093

Bagging 0.7835 0.7539 0.6647 0.8580

RandomForest 0.7992 0.7769 0.6509 0.8552

RotationForest 0.8216 0.8028 0.5661 0.8952

LogitBoost 0.7543 0.7166 0.7720 0.7951

DecisionStump 0.6533 0.5388 0.9610 0.5305

Table 16: Average performance measures from ten-fold cross validation on the given classifiers
on the MiddlePhalanxOutlineCorrect dataset

Classifier Accuracy
Balanced
Accuracy

Negative
Log Like-
lyhood

AUROC

TreeEnsemble 0.8194 0.7902 0.5972 0.8742

J48 0.7240 0.6996 1.3687 0.7148

Bagging 0.7801 0.7494 0.6787 0.8447

RandomForest 0.7722 0.7344 0.6671 0.8388

RotationForest 0.7947 0.7656 0.6161 0.8704

LogitBoost 0.7465 0.6985 0.7765 0.7696

DecisionStump 0.5724 0.5118 0.9804 0.5183

Table 18: Average performance measures from ten-fold cross validation on the given classifiers
on the discretized MiddlePhalanxOutlineCorrect dataset
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