
CMP-6045B Developing Secure Software –

Report 2: Allocated System Testing

Group UG-4:
100263580 – Steven Diep

100251448 – Sam Humphreys
100225776 – Martin Siddons

6214363 – Chris Sutton

1 Introduction

The process of cybersecurity involves playing the attacker as well as the defender. The ‘red
team’ role is useful for highlighting security weaknesses within an application, which we will use
here to test the site built by group UG-3. When searching for vulnerabilities, a list of tests is
required to find those which are common and applicable to the site’s functionality.

2 Analysis of Testing Approach

For account enumeration, we will be looking to test if the error for incorrect password and
non-existent username are the same. We will check if the time taken for the system to reply to a
login is consistent for existing and non-existing users. We will look for hints of valid usernames
in URLs, page titles and HTML packets. When resetting the password, we will see if the site
tells us if an account doesn’t exist. We will test if login names and display names are different.

To test for session hijacking, we will look for client information to see if sessions have been
implemented, and if there is a time limit on the session. We will look to see if a session key is
returned in a URL, header or cookie in an unencrypted form, and also see if changing the source
IP address is possible between requests.

For SQL injection, we will test input forms, POST requests, GET requests, cookies and headers
for vulnerabilities. We will try piggybacking queries, tautologies, abusing character encodings,
illegal queries and UNION statements.

For testing XSS, we will check to see if certain characters (& < > " ’ % * + , - / ; =
ˆ|) are removed or encoded from input forms. From there, we will look at injecting scripts into
the page to carry out both persistent and reflected attacks.

We will look to see if the site is using a CSRF token hidden on each form once logged in. We
will also look to see if the user is forced to re-authenticate during a session.

We will check for a limit on login attempts for the possibility of brute-forcing the password.
We will look inside the database to see what information an attacker could extract from it.

3 Evidence of System Testing

Upon starting the site we noticed that there is no option for a user to create an account, and
since the developers have not given a visitor access to a guest account, we would be unable to
test the internal pages of the site. It also appeared that the user search functionality was broken
as it did not respond to any queries.

We found through testing for account enumeration that error for incorrect password and
non-existent username are the same. Login name is the same as display name, so we were able
to find all usernames from the front page posts. Timing is different for existing and non-existing
usernames - correct usernames take longer to process. URL for the user page is the same as the

1

login name. Password reset link only says it sends an email, which is secure. The URL for user
page returns whether a user exists, if user does not exist it returns No such user.

We were unable to test session hijacking this since there is no way to create an account,
therefore there is no way to find if a session is implemented. However, checking the code we can
see default sessions appear to be implemented and that PERMANENT_SESSION_LIFETIME is
set to fifteen, meaning the session expires fifteen minutes after closing the browser.

We tested for SQLi, on the Username field on the Login form and the same on the Reset
Password form. We attempted ’OR 1=1-- for tautology, 0x27OR 1=1-- for single char-
acter encoding and all for hex encoding, and illegal queries (AND CONVERT (char, no))
to force an SQL error. We would have used a UNION call if there was an input that sent
back a result to the browser. The same attacks were also submitted as a URL request to
/loginfail/?error=[query] and [sitename]/[query]/, but the site did not respond
to these attacks. We wanted to try submitting cookies with SQLi, however there were no cookies
on the site. We attempted to submit our own requests outside the browser - by using Wire-
shark we could see what a submitted form looks like (figure 1), we then edited the header and
submitted it with the Linux curl command, however this was not successful.

Due to being unable to create an account, we could not access the ability to post, which would
be the only way we could push data directly into the database and do a stored XSS attack. For
a reflected attack, we attempted to post a standard attack <script>alert(1)</script>
on both the previously mentioned search boxes, as well as the previously mentioned URL fields
with no luck. Testing &<>"’%*+,-/;=ˆ| showed that the server escapes all characters (figure
2). However, we were able to perform a reflected XSS attack by using HTML encoding to de-
feat the escaping of normal quotations. By submitting <img src="https://duckduckgo
.com/i/b2e38b1b.png"onmouseover=alert""("abcdef")"> to the pass-
word reset, the page returned with the error in figure 3, which tells us an exception oc-
curred and the site is vulnerable to SQLi and Stored XSS should we have the ability to
post. We decided to use information in the server code to break into an account to test
this on the create post page, and found that it submitted to the database. Using this tech-
nique we also could demonstrate redirecting to an attacker controlled website with the content:
<img src="https://duckduckgo.com/i/b2e38b1b.png"onmouseover="window
.open("http://www.google.com","_blank")">.

None of the forms we could access appear to include a CSRF token, so it would be possible to
embed a request on another site and have it executed if you knew a user had an active session.
This would be done by partially filling in a form URL and having a validated user click the link
to submit a request from them with the details we entered.

Looking at further vulnerabilities, the site uses a graphical password system that uses 3
(X,Y) coordinates sent in the POST request. The size of the image reveals the range of possible
X values as 0-1500 and possible Y values as 0-1000. There is no restriction on the number of
logins, therefore we attempted to brute force entry using Burp Suite as shown in Figures 4, 5,
6. We determined the maximum number of combinations to be (1500 × 1000)3 = 3.375 × 1015

as a worst case. As this would take too long to iterate, so we did not continue. The Database in
figure 7 shows that every field aside from the username appeared to be hashed. Although great
for security, we did question the usability of having information such as name and email hashed
rather than encrypted, as they are now unable to be returned.

4 Conclusion

The inability to log in easily stymied our investigation however our testing revealed several
vulnerabilities with the site, and some serious usability problems. As we have proven, it takes
only one incorrect setting to bypass the rest of a site’s security.

2

A Appendix A

A.1 Figures

Figure 1: An image showing the output of Wireshark from a login request to the server.

Figure 2: Login Error received when trying to insert restricted characters into the form. Note
how the characters are not printed below the title as expected.

Figure 3: Error sent back from the server indicating an exception was generated on the server
during processing, showing the SQLi was successful.

3

Figure 4: Figure of Burp Suite showing the HTTP request with the variables being changed in
the payload.

Figure 5: Figure showing the payload in Burp Suite to be sent to the server.

4

Figure 6: Figure showing Burp Suite executing the attack on the server.

Figure 7: A look at the SQLite database as seen from within PyCharm.

5

	Introduction
	Analysis of Testing Approach
	Evidence of System Testing
	Conclusion
	Appendix A
	Figures

