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Abstract

Over the previous decade, the field of Machine Learning research has produced a con-
siderable number of classification algorithms which can be used to make predictions on
given data. Comparing the effectiveness of these algorithms can be a difficult task when
most are produced as stand-alone code for a research project. In the area of Time Se-
ries Classification, the Time Series Machine Learning (TSML) toolkit aims to solve this
issue by implementing as many of these algorithms as possible in one place, to allow
for easy evaluation and comparison. This report details the implementation of one such
algorithm into the toolkit, and evaluates its use against similar algorithms previously

implemented.
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1 Introduction

1.1 Machine Learning and the Time Series Domain

In the field of Machine Learning, classification is the act of building an algorithm with
a given set of data. Data unseen by the algorithm can then be processed by it in order to
be classified into a result, which is a prediction of one of several possible outcomes that
depend on the features of said data. For example, if we wished to predict whether there
might currently be a traffic jam on a nearby road, we would gather relevant data such as
the time of day, the weather, the day of the week and month of the year, how many cars
have passed a certain spot in the road in a given time-frame, if there are roadworks in
the area, etc., and the outcome - whether there was a traffic jam at the given time. This
data can then be entered into a classification algorithm to produce a model on traffic,
which is called training the model. With the model, the user can enter in data collected
at the current time and be given either a true or false statement on whether the model
believes there is currently a traffic jam, or the likelihood as a percentage that the model
thinks there is a traffic jam. The former is known as classification, which is useful for
predicting discrete values such as True/False, Male/Female, Large/Medium/Small etc.,
the latter is regression, which is useful for predicting continuous values such as Height,
Age, Price etc.

Time Series Machine Learning concerns the classification of data where at least
one variable is related to time. For example, this could be analysing the output of a
heart monitor to classify whether a patient is at risk of a heart attack (Jin et al., 2009),
analysing the sound of an animal to identify which species the animal belongs to (de Ca-
margo et al., 2017), or even estimating how long it might take a team of developers to
write a piece of software (Oliveira et al., 2010).

There are a number of algorithms available to researchers today designed to pro-
vide insight into different collections of data, but there is little effort being made to
consolidate these algorithms into one place and evaluate them against each other to un-
derstand which algorithms are best used in which situations. This was the motivation
behind putting together the Time Series Machine Learning Open Source Java Toolkit
(TSML)!. TSML is a Java toolkit compatible with the popular Weka? machine learning

Lhttps:// github.com/ uea-machine-learning/ tsml/
2 https.// www.cs.waikato.ac.nz/ ml/ weka/
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open source Java toolkit, with a focus on time series classification. It was put together
following the production of Bagnall et al. (2017), where the authors compared eighteen
popular Machine Learning algorithms against each other on 85 datasets to understand
how well they matched up when presented with the same data in a controlled setting.
The core of this project is to contribute to this open source toolkit by implementing
something that can be used by researchers to carry out further study. In the initial project
description, this was described as one of the following: Transformations, Experimental
evaluation, Classifiers, Clustering, Visualisation or Regression. Since what [ will design
will be used by others without me being available for questions, it is important that the

work is clear and well documented.

1.2 Core Project Research

My research focussed on understanding the core elements that I was expected to choose
from to implement in the toolkit. In the previous section I outlined these five elements,

and in this section we will explore them in more detail.

1.2.1 Transformations

Transformation is a step that can be taken between gathering data and producing a
model, where the data are prepared in a way that makes any model built from it more
accurate. Transformation is also known as Feature Engineering, Feature Processing or
Feature Extraction where a feature is a variable in the gathered dataset (Google, 2020).
Normalisation transforms a continuous variable so that the mean value is 0 and the stan-
dard deviation is 1, which brings all the values within that variable to a common scale.
Rescaling is a transformation where a vector of values is added or subtracted by a con-
stant, then multiplied or divided by a constant to transform the data from one scale to
another, such as from Celsius to Fahrenheit (Lakshmanan, 2019). By combining these
methods we can standardise a variable, a common method of which is to subtract the
mean and divide by the standard deviation for each value in the variable to obtain the
Standard Normal. There is also the min-max scaler, which transforms all values in
a variable to between 0 and 1 while maintaining the distance between them (Huilgol,
2020). There are also mandatory transformations that must be used in certain cases
where data must be made compatible with the model being used. These include conver-

sion, where non-numeric features are converted into numeric ones such as true and false

Reg: 100225776 8



CMP-6013Y

into 1 and 0, and input resizing, where the number of inputs is scaled to a fixed size such
as with resizing images in image recognition tasks. Bucketing is a form of conversion
transformation which can take multiple values, such as a range of continuous values,
and map them to a single categorical value, such as all the values from 1 to 1.99 in a
variable being categorised as 1. With time series data, transformations generally act on
variances in the time domain.

There are a number of transformations available to use on data in the above categories.
For normalisation, there is Linear Scaling or Min-Max (for uniform distributions where
you don’t want to change the shape of the data), Log Scaling (where the majority of
the values are concentrated in a small area of the distribution and you want to even this
out), Clipping (where the variable has a long tail of values that don’t give much insight
into the data, so they are bundled into one single value) and Z-Score (where the variable
has a large range but few outliers). There are a number of different transformations
that can be used to removing time series features, too. Shapelet transforms work on
data elements called shapelets, which are subsets of the data set made of a consecutive
collection of data points, and example of which can be found in Figure 1. By selecting
a shapelet from the data and moving through the data set, we can use a shapelet trans-
form to locate other parts of the data that match that shape, which should indicate the
two areas share a commonality. Fourier transforms are transformation algorithms that
can take a waveform within space or time and separate it into its component spacial or
temporal frequencies. For example, a Fourier transform can take a musical chord and
separate it into its individual note frequencies and volumes. Principal Component Anal-
ysis is a transformation used to reduce the dimensionality of data by separating out the
most important parts, known as the Principle Components, which can be more easily
compared (Abdi and Williams, 2010).

Transformations are a critical component of the the Hierarchical Vote Collective of
Transformation-based Ensembles (HIVE-COTE), which is currently shown to be one of
the top algorithms in the field of time series machine learning (Middlehurst et al., 2021).

All of the previously mentioned transformers have, in some way, previously been
added to TSML. Although new transformer algorithms are being created all the time,
there is, unfortunately, a machine learning model primarily used for Natural Language
Processing called a transformer model that has been popular since 2017, which makes
searching for new transformation algorithms quite difficult. All of the transformers I
could find while researching this topic were already implemented in some way within

Reg: 100225776 9
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TSML, making this a difficult element to implement in the toolkit.

1.2.2 Experimental Evaluation

Experimental Evaluation is a process of comparing different classifiers across different
datasets to discover the strengths and weakness in models and learning how these mod-
els can be combined to produce ensembles that utilise the individual model’s strengths
in combination with other models. This is the core of what TSML was designed for
and a number of papers have been written by the TSML team at UEA which details
the type of evaluation that can be carried out using the toolkit. Aside from the pre-
viously mentioned Bake Off paper (Bagnall et al., 2017), the A Tale of Two Toolkits
series is centred around experimental evaluation. The first paper from the series (Bag-
nall et al., 2019a) compares the accuracies of algorithms from sktimei, a Python time
series machine learning toolkit compatible with scikit-learn, with their TSML equiv-
alents and advises on improvements that can be made to sktime. The second paper
(Bagnall et al., 2019b) explores four dictionary-based classification algorithms (BOSS,
cBOSS, S-BOSS, WEASEL) inside TSML across a range of 107 data sets and goes into
much detail about the strengths and weaknesses of said algorithms. Paper three (Bagnall
et al., 2020) details the use of the HIVE-COTE meta-ensemble, which is an evolution
of the COTE classifier detailed in Bake Off and formed of a collection of multiple dif-
ferent collections of classifiers working together. More recently, a follow-up paper to
this has been written which details changes to HIVE-COTE and how it compares to new
algorithms that have more recently been added to TSML (Middlehurst et al., 2021).
The papers explored above give a great overview of the way classifiers within TSML
are evaluated. Critical Difference (CD) diagrams are used to easily tell how much bet-
ter some algorithms are compared to others. First introduced by Demsar (2006), these
diagrams display the average of the rank averages of each classifier tested as a value
from 1 to n, where n is the number of classifiers tested. Classifiers are then grouped
in cliques with a horizontal bar to indicate where two or more classifiers are not sig-
nificantly different from each other. This significance is determined through a pairwise
Wilcoxon signed-rank test, which is a statistical test to assess whether the difference in
mean ranks between two classifiers is statistically significant, and is given by the for-

mula W = Zﬁ\i | [sgn (x2; —x1,;) - R;], where X, is the sample size, sgn is the sign func-

3 httos:// www.sktime.org/ en/ latest/
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tion (whether the value is positive or negative), and R is the Rank. If this value is less
than the 5% level of significance for the two-tailed test (1.96), then the difference be-
tween the two classifiers is considered not statistically significant and will form a clique
(Statistics-Solutions, 2020). This test is then performed against all classifiers tested to
produce the CD diagram.

Another method used in evaluation is Cross-validation(CV), which is where a given
dataset is randomised and divided into k subsets (often ten) where k — 1 subsets are used
to train the classifier while the remainder is used to evaluate its accuracy. This is then
repeated k times, where the evaluation subset is changed each time until all subsets are
used as the evaluator (Brownlee, 2020b). The average results from these tests are then
taken as representative of the overall quality of the classifier on that data set.

Although Experimental Evaluation doesn’t appear to be a large addition to the toolkit
by itself, I feel that it could be pared with another element in order to emphasise the

impact that element may have on the toolkit.

1.2.3 Classifiers

A classifier, as has previously been covered, is an algorithm used to predict the class of a
set of data. Classes are strictly defined in the dataset and the full range of classes known
to the model from the start of training . An example of a class can be the numbers 0-9
in the case of recognising handwritten digits, or whether a patient requires further mon-
itoring or not when presenting certain symptoms. Providing the targets with the input
data in this way defines classification as a form of supervised learning. Le (2020) de-
tails a number of different types of classification algorithms which all have their various
strengths and weaknesses.

Linear classifiers can be used on two-class problems by bisecting the input space
with a hyperplane - that is, for a problem with only two inputs classifying to just two
classes, the two inputs can be mapped to dimensions on a grid and a line can be used to
separate them into their respective classes. For three inputs, a three dimensional space
is constructed and a plane is used to classify them, and » > 3 inputs can be separated
with a hyperplane (who’s dimension is always n-1). This approach is not particularly
accurate in general but is one of the fastest available, and with a large enough number of
inputs it can rival more complex solutions (Yuan et al., 2012). Linear classifiers imple-
mented within TSML include LibLinear (Fan et al., 2008), LinearRegression, Winnow

Reg: 100225776 11
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(Littlestone, 1988) and multiple Bayesian classifiers.

A Support Vector Machine (SVM) in its most basic form is a linear classifier which
attempts to create the largest gap between two categories by having only the support
vectors (values closest to the separation boundary) affect the position of the boundary.
However, by utilising a kernel function, extra dimensions can be added to the data in
order to allow it to be separated in more ways, allowing a hyperplane to be constructed
that will cleanly separate complex distributions. In addition, a technique known as
the kernel trick can be utilised to create a kernel function with much less processing,
bringing time complexity from O(n?) to O(n). SVM algorithms within TSML include
SMO & SMOreg (Platt, 1998), TunedSVM and LibSVM (Chang and Lin, 2011).

K-Nearest Neighbour (KNN) Classifiers map all inputs to a search space model. Un-
seen data are then mapped into the search space and are classified by the majority class
from the nearest k elements to that point, which are measured using a distance mea-
sure such as Euclidean or Manhattan distancing. They are considered a simple class
of classifier which require a large amount of storage space (as they must hold all the
values from the dataset within the classifier model rather than describing the positions
algorithmically), but this means that data can easily be added to the model over time
to potentially improve its effectiveness. KNN algorithms previously added to TSML
include IBK (Aha and Kibler, 1991), kNN and DTW_KNN.

Boosting is a type of meta-algorithm which utilises multiple classifiers in an ensemble
to reduce bias and variance (Breiman, 1996). Generally, these boosting algorithms will
be simple so-called *weak learners’ which individually would be poor performing but
quick to compute a prediction, but when used together will produce a result far greater
than their individual contributions. This is achieved by weighting each classifier accord-
ing to whether it correctly predicted a class, and then re-weighting on the addition of
every instance to the dataset. Some boosting algorithms currently included in TSML are
AdaBoost (Freund et al., 1999), MultiBoostAB (Webb, 2000), SimpleLogistic (Sumner
et al., 2005) and TunedXGBoost (Chen and Guestrin, 2016).

Classification Decision Trees are one of the most common types of classification
algorithms (Wu et al., 2008). They map each variable to a branch on a tree which splits
down to leaves, each of which contain a predicted class for the instances with those
variable values. The branches are calculated through a splitting criterion, which aims
to maximise the ’quality’ of a split by choosing to branch on the variable which most
cleanly splits the class. Decision trees previously added to TSML include SimpleCart

Reg: 100225776 12
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Breiman et al. (1984), RandomSubspace / ProximityForest / RandomForest (Breiman,
2001), BFTree (Shi, 2007), ADTree (Freund and Mason, 1999), ID3 (Quinlan, 1986),
J48 (Quinlan, 1993) and many more.

Artificial Neural Networks (ANN) have been gaining prominence in Machine Learn-
ing over the past decade. Modelled after the design of an animal brain, they pass vari-
ables into a layer of neurons which combine each variable with a weight, passing it
through a threshold and sending the new value on to the another layer of neurons. Val-
ues from each neuron in the previous layer are brought together and the same action
is applied again until the output layer is reached, which in this case will be a layer of
neurons the same size as the number of classes. TSML includes MultilayerPerceptron
(Rumelhart et al., 1985) as an ANN suitable for classification.

1.2.4 Clustering

Clustering is a form of unsupervised learning, which relies on the algorithm group-
ing data with similar variables together (Roman, 2019). They are used when there is
no class that can be predicted but the data can still be formed into groups that causes
some instances to bear a stronger resemblance to each other than they do to the re-
maining instances (Witten et al., 2011). Generally speaking, these clusters will often be
mapped with a centre point and boundary in order to understand which cluster unseen
data could fall into. It is generally used as a data analysis tool to understand more about
a given dataset, such as if there are outliers or anomalies, before being processed further
(Brownlee, 2020a). Priy (2020) breaks clustering down into four methods:

* Density-Based Methods, which work on the assumption that denser regions have
a commonality which isn’t shared by the lower-dense regions.

e Hierarchical Based Methods, where clusters form a tree structure where new clus-
ters are formed off of previously created ones. Divisive methods start with a
complete dataset and separate out the clusters going down the tree, whereas Ag-
glomerative methods start with each cluster and decide how they come together

to form the dataset.

* Partitioning Methods separate the data into k partitions where each partition forms
a cluster.

Reg: 100225776 13
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* Grid-based Methods can quickly cluster data by separating it into a grid and clus-
tering data in each cell irrespective of the other cells.

TSML already contains a number of clustering algorithms, including DictClusterer
/ TTC (Aghabozorgi et al., 2014), KShape (Paparrizos and Gravano, 2015), KMeans
(MacQueen et al., 1967), CAST (Ben-Dor et al., 1999) and many more. The field of
clustering algorithms is quite diverse and there is a high likelihood there exists is a good
algorithm that has yet to be added to the toolkit.

1.2.5 Visualisation

Visualisation is where the output from an algorithm is transformed from raw numbers
and labels into another form which makes it easier to understand the data being pre-
sented. This is usually in the form of plots / graphs, though depending on the algorithm
you might want to visualise how it makes decisions, such as displaying a tree structure
in the case of Decision Tree Classifiers or Hierarchical Clusterers, or displaying the
accuracies and weights of individual algorithms inside a boosting ensemble.

The scikit-learni toolkit in particular is known for impressive data visualisations due
to it being able to hook into and leverage the matplotlib Python library for drawing plots
and graphs of data. Fortunately, TSML also includes the ability to hook into matplotlib
using python scripts included in the toolkit, however there doesn’t appear to be many
options available at present for utilising this.

Evaluation of classifiers appears to require many different types of visual aids which
have previously been partly covered. These include CD diagrams, bar charts summaris-
ing the features in a collection of datasets (such as grouping counts of classes or dataset
sizes), plots of time taken to train an algorithm against another feature such as the size
of the training set or the accuracy of the algorithm during testing, plotting expected
accuracy against actual accuracies (known as a Texas Sharp Shooter plot), to name a
few. It would seem TSML does not natively support creation of these plots and it would
seem, from their use in previous papers, that this could be a useful addition to the toolkit
- especially if this could be developed in a way that didn’t require Python or MATLAB

to be installed on the user’s machine.

“https.// scikit-learn.org/ stable/
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1.2.6 Regression

Regression is a group of algorithms that are a counterpart to classification. Where clas-
sification uses inputs to find a specific class (or *box’) for fitting unseen data into, regres-
sion attempts to map those inputs to a continuous variable output. An example of this
is predicting the average height of a plant from certain features, or predicting the price
of a house from data about it, such as number of rooms, its location or its floorspace.
Regression has many similar counterparts to those previously explored under classifica-
tion, though it’s worth pointing out the differences.

Linear Regression involves using a line (or hyperplane) to find the best fit for the
given data, where unseen data can be mapped to a point on this line that matches closest
with its inputs. (Multiple) Linear Regression generally will only work when there is
a clear relationship between the input features and its output, such as the height of a
human by age and sex. These are most effective with continuous inputs, whereas clas-
sifiers must find a way to split the data and lose information. Regression algorithms in
TSML include LinearModel, MultiLinearRegression, LeastMedSq and SimpleLinear-
Regression.

Logistic Regression is a technique used when the inputs are continuous but the output
is binary (either O or 1, true or false). The relationship between the input variables is
found using a logit function (Tyagi, 2020). Within TSML, LogitBoost (Friedman et al.,
1998)uses this technique, and "FT’ (Gama, 2004) is a tree algorithm which uses logistic
regression.

Support Vector Machines can also work on regression problems and operate in a sim-
ilar way to their classification counterparts, but rather than classifying to a number of
classes, a Support Vector Regression algorithm finds function that can map to continu-
ous variables. An example in TSML of SVM regression is TunedSVM.

1.2.7 Core Project Decision

After researching the field of Machine Learning and the choices available for the core of
my year project, [ have decided to focus on adding a new classifier algorithm to TSML,
as it appears it could be a substantial addition that I feel can be of use to the team for
comparison with other algorithms, or inclusion in ensembles - clusters of algorithms
that work together to produce a more accurate prediction. To this end, I intend to also

perform my own experimentation with the algorithm I implement in order to under-
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stand its strengths and to compare its results to those given in previously written papers
utilising said algorithm.

I decided to focus my search here on Decision Tree and Boosting algorithms which
are yet to be included within the TSML toolkit. This is due to the fact that Decision
Trees are taught earlier in the second semester of the Machine Learning module which
will hopefully allow me more time to understand how these algorithms are implemented
in TSML once I have adjusted myself to using the features of the toolkit. Boosting
algorithms appear to be a focus of research in TSML, where ensemble algorithms in
general are often constructed, evaluated and tweaked, such as with BOSS and TSF - as
well as collectives of ensembles, such as HIVE-COTE, TS-CHIEF and ROCKET.

He et al. (2020) proposes a framework called ORCL-U, which combines a confidence-
based labelling strategy (CLS) and an online rule-based classifier learning approach
(ORBCL) to form a classifier which handles unlabelled multivariate time series data
and has been proposed to solve the issue of such data taking a large amount of time to
process with conventional methods. While the results of evaluation against two other
classifiers (PLKNN and SAMULT) proved promising, the complexity of implementing
both the labelling strategy and the classifier may be too much considering the amount
of time I’ll have to implement it.

Malhotra et al. (2017) proposes a Recurrent Neural Network (RNN) technique called
TimeNet which can be pre-trained on time series datasets, which it extracts features
from. TimeNet can then use the features previously found to classify unseen datasets.
Although it is impressive that a classifier can be built to somewhat classify data it’s
never been trained on, and TSML is currently lacking in RNN classifiers, the results
presented didn’t seem too impressive when compared with the results currently being
produced by meta-ensembles in TSML, and I don’t feel there is a need for the toolkit to
have a model that can classify data it’s not trained on at this time.

Gou et al. (2019) proposes a KNN variant they call Generalized Mean Distance-
based K-Nearest Neighbour classifier (GMDKNN). This algorithm proposes to reduce
the sensitivity of the model to k by calculating the local mean vectors to the nearest
k neighbours, then extending the harmonic mean distance to it’s general form, which
the authors refer to as the generalized mean distance. The results in this paper initially
appear to be impressive, where GMDKNN appears to have the greatest accuracy of
all the evaluated classifiers. However, a lack of a CD diagram or any mention of a
Wilcoxon Signed-Rank test was a hint that these results may not be as impressive as it

Reg: 100225776 16
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seems. Indeed, the margins between GMDKNN and the second-place classifier appear
to be tiny at times, and the accuracies are generally in the 80s and 90s, which indicates
to me that the data sets were specifically chosen to make the classifier appear better than
it might actually be. This finding, in addition to the fact that KNN classifiers in general
are vastly outperformed when compared to many other classifiers available today, have
me believe that this would not be a reasonable addition to the TSML toolkit.

Brunello et al. (2019) proposes a variant on the J48 Decision Tree Classifier called
J48SS. This classifier adapts the Weka implementation of J48 to handle Sequential and
Time Series data in addition to the numerical and continuous variables it can already
handle. It is claimed that the classifier can even handle all four attribute types within
the same dataset, during one single execution cycle. To handle sequential data, the
classifier uses an existing algorithm called VGEN (Fournier-Viger et al., 2014), which
the authors claim is the state-of-the-art algorithm for extraction of general sequential
generator patterns. To handle time series data, the classifier relies on another existing
algorithm called NSGA-II (Deb et al., 2002) to extract time series shapelets. The exper-
iments in this paper focussed on two areas, analysing speech from phone conversations
and classification of time series datasets from the UCR archive. The results of the first
area were a little disappointing to the researchers, performing noticeably worse than the
same result gathered through the Google Speech API, though it was noted that the error
rate was still low enough that the company involved with the experiment was happy
with the results. The second area produced average accuracies which were impressive
when compared to the RandomShapelet algorithm mentioned, though I feel it would be
nice to see comparisons to other algorithms. With this in mind, I feel that the TSML
toolkit may be able to benefit from the addition of this classifier and I will focus on it’s
implementation for the remainder of this report.

2 Design

2.1 Classifier Details and Requirements

As noted in the previous chapter, the J48SS classifier contains components to handle the
Numeric and Continuous data types that J48 handles, and extends this to handle Time

Series and Sequential data too.
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2.1.1 J48

The mechanism for handling Numeric and Continuous data types is the same for J48SS
as it is for its predecessor J48, which is included in TSML. J48 is the Weka implementa-
tion of the C4.5 algorithm introduced by Salzberg (1994), one of the most widely used
classification algorithms in machine learning. J48 builds a decision tree by starting with
the entire dataset of instances provided by the user, and finds the variable (referred to
as an attribute in Weka) which best splits the classes. This is found through calculating
the Information Gain (IG) of each attribute at that point in the tree, where the attribute
with the largest gain value is chosen. IG is calculated by the formula Gain (X,A) =
H(X)—Yyey %H (Y), where H (X) and H (Y) represents the entropy of the parent

nodes and current potential nodes,

Y| is the number of instances in the parent node and
|X| is the number of instances in the currently assessed potential node (Lutes, 2021).
The entropy H is calculated with the formula (X) = —Y¢ , p(X =i)log, (p(X =1)),
where p represents the probability of a given event occurring. When a node is produced
which results in all instances having the same class, that node is called a leaf, and will
return the value of that class when an unseen instance matches down to that node. If
the algorithm forms a node where all attributes have been exhausted but instances of
multiple classes remain, a distribution function is created weighted by the remaining
classes, by which unseen instances will use.

J48 is tunable across many parameters, including pruning, setting the minimum num-
ber of instances per leaf, setting binary splits, using Laplace smoothing, using MDL
correction and setting a seed. J48SS, being developed from the same initial code, will
also handle these tuning parameters through setters in the class as well as through com-
mand line options. In addition, the classifier will handle additional tuning parameters

for the additional attribute types below.

2.1.2 VGEN

VGEN is cited by Brunello et al. (2019) (hereafter referred to as ’the J48SS paper’)
as being implemented in an Open-Source Data Mining library written in Java called
SPMFi (Fournier-Viger et al., 2016). It’s sequential pattern matching operation is de-
tailed in both the J48SS paper, as well as by Fournier-Viger et al. (2014), which de-

scribes the process as discovering interesting patterns in sequences - specifically, fre-

3 https:// www.philippe-fournier-viger.com/ spmf/
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quently occurring patterns from within a dataset. The issue highlighted in the J48SS
paper is that algorithms presented in the past generate large numbers of patterns, which
can be very memory and CPU intensive and gives outputs that can be overwhelming and
hard to understand. Due to these issues, a series of algorithms were created to extract
’sequential generator patterns’ instead, which can hold information on all the frequent

patterns that can be generated, and lead to the development of VGEN.

2.1.3 NSGA-II

The NSGA-II algorithm responsible for extracting shapelets is implemented in a frame-
work for multi-objective optimisation and metaheuristics called jMetalE (Durillo and
Nebro, 2011). It’s operation is detailed in both the J48SS paper, as well as by Deb
et al. (2002). The jMetal implementation is threadable, which hopefully will allow it to
process shapelets faster than existing classifiers within the TSML toolkit while keeping
accuracy high. NSGA-II includes parameters for tuning that I will allow to be config-
urable from J48SS. These include maxGap, maxPatternLength, maxTime, minSupport,
patternWeight and useIGPruning.

A downside with the design of J48SS is that time series and sequential data must
be specially labelled in order for the classifier to process it correctly. This involves
editing ARFF files to place all attributes (except the class attribute) into a single string
of comma-separated values for each instance. All but one attribute tag must be removed
from the file header and that tag must be edited to identify the data as either a time
series string or sequential string, which is picked up by the classifier once the data is in
an Instances object.

There are two major design goals that I wish to accomplish from this project. The
first is to be able to tie together the three different components described above into a
working system. The second is to ensure maintainability of the code through Javadoc
comments, code commenting and removal of all unnecessary files. Further goals are

explained in the MoSCoW analysis, below.

S htto:// jmetal.sourceforge.net/
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2.2 UML

Throughout development, the UML for J48SS has changed a large amount. My ini-
tial plan was simple, based off of the diagrams given in the J48SS paper. As I worked
further on development, I was able to better define how classes would link together.
Although this is not usually how UML would be used, I did find it useful to be able to
iterate on the UML as I went, and refer to my current UML diagram to remember how
some classes interacted with others. Below you will find the UML diagrams as they
exist at project submission, though as this is what I would consider a ’living project’, I
imagine some further changes to methods to occur in the weeks following submission.
Figure 2 shows the classes responsible for creating the decision tree of J48SS. Note
that classes pNSGAII_bestShapelet and AlgoVGENModified are shown here
as single classes, though these are only the entry points to their respective algorithms.
Figure 3 shows the jMetal portion of the classifier which houses the NSGA-II algo-
rithm for time series shapelet classification. I’ve done my best to untangle the web of
classes, removing approximately half of all classes drawn in my original class diagram,
but some issues of confusing composition and dependency still remain. 4 details the
SPMF portion of the classifier, which houses the VGEN algorithm for classification of
sequential data. This diagram has also changed significantly throughout development,
being reduced from nine classes to the five shown in the diagram, leaving relationships

between classes here easier to understand than the rest of the project.

2.3 Pseudocode of the Classifier

The core of the J48 algorithm can be described in the below Pseudocode.
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Algorithm 1 J48(D, A) return T

Require: Dataset D, formed of instances each containing a set of attribute values and

one class attribute, and list A of attributes to test.

Ensure: T, The fully-formed decision tree of nodes.

1

—_— = e
W NN = O

— e e e
® X s

—_
Nel

R e A L R

T+ null
if all D instances have the same class value or A := empty then
branch < D > the value of the leaf node
T.add(branch)
return T
maxGain <0
aSplit < null > attribute to split on
e < FindRootEntropy(D)
for attribute a € D do
g < FindInfoGain(a, e)
if g > maxGain then
maxGain <— g
a < aSplit

: A< A.remove(a)
: for each value v € a do

S« all instance of D with a.value
branches < J48(S, A)
T.add(branches)

: return T

Brunello et al. (2019) has defined a modification to the J48 algorithm defining how

J48SS approaches the task of splitting the tree, as can be found below.
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Algorithm 2 nodeSplit(N) return T

Require: Node N, containing data to be split.

Ensure: T, The fully-formed decision tree of nodes.

1: if N instances have the same class value or other stopping criteria met then

2 make N a leaf node
3: else
4 best_attr < null
5: best_ng <0
6 for each attribute a € N do
7 if a.type := numeric or categorical attribute then
8 a_ng < measurelnformationGain(a)
9 if a_ng > best_ng then
10: best_ng < a_ng
11: best_attr < a
12: if a.type := sequential string attribute then
13: pat, pat_ng < VGEN(a)
14: if pat_ng > best_ng then
15: best_ng < pat_ng
16: best_attr < pat
17: if a.type := time series string attribute then
18: shap,shap_ng <— NSGA-II(a)
19: if shap_ng > best_ng then
20: best_ng < shap_ng
21: best_attr < shap
22: children_nodes < splitData(N.instances, best_attr) > split on best_attr
23: for each child_node in children_nodes do
24: R < nodeSplit(child_node)
25: N.add(R)
26: return N

The core of VGEN requires understanding of Generator Patterns. Fortunately, Fournier-

Viger et al. (2014) explains with the below pseudocode how the core of the algorithm

works. Note, that for use within J48SS, we are only interested in the most useful (highly
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discriminative) pattern rather than the most frequent pattern, so prior to the steps below

we split the data to find the information gain, then filter these results further.

Algorithm 3 patternEnumeration(D, minsup) return P

Require: Collection D, the sequence database to be searched and minsup, the minimum

support that the extracted sequential patterns must have.

Ensure: P, a collection of the most frequent patterns from D, determined by minsup.

1

5:

2
3:
4

F < findFrequentltems(D) > get the list of frequent items
for each item s € F do
L + findLexicallyLarger(F, s) > get all values of F greater than s
P < search(s, F, L, minsup) > see below algorithm
return P

Algorithm 4 search(pat, F, L, minsup) return P

Require: pat, the patterns to be filtered; F, the list of frequent items; L, the set of items

from F that are lexically larger than par and minsup, the minimum support that the

extracted sequential patterns must have.

Ensure: P, a collection of the most frequent patterns from D, determined by minsup.

1:

Ny

10:
11:
12:
13:
14:

15:

sTemp <0
iTemp <0
for each item j € F do
if the s-extention of pat is frequent then
sTemp <— sTempU j
for each item j € sTemp do
L < findLexicallyLarger(sTemp, j) © get all values of sTemp greater than j
P < search(the s-extension of pat with j, sTemp, L, minsup)
for each item j € L do
if the i-extention of P is frequent then
iTemp < iTempU j
for each item j € iTemp do
L «+ findLexicallyLarger(iTemp, j) > get all values of iTemp greater than j
P < search(the i-extension of P with j, sTemp, L, minsup)

return P
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NSGA-II must be modified to handle data coming in and going back out to the clas-
sifier. One of these modifications is to the Crossover Operator, which is defined in
Brunello et al. (2019) as taking two lists of binary arrays and swapping the ’tails’ of the
arrays based on a random index. I believe this will be accomplished with the following

operation.

Algorithm 5 shapeletCrossover(P1, P2) return C1, C2
Require: P1 and P2, binary array ’parent solutions’ which represent shapelets to be

crossed.
Ensure: C1 and C2, child solutions of the inputs that represent the shapelets after being
crossed.
C1, C2 < null
maxIndex < 0
if P1 > P2 then
maxIndex <+ P2.length - 1
else

AN R S ey

maxIndex < P1.length - 1

7: plindex <— randomNumber(0, 1) * maxIndex > get random points to cross
8: p2Index < randomNumber(0, 1) * maxIndex

9: clTail < P2.copyArray(plIndex, P2.length)
10: c2Tail < P1.copyArray(p2Index, P1.length)
11: clHead < P2.copyArray(0, plIndex)
12: c2Head < P1.copyArray(0, plindex)
13: C1 < JoinArray(clHead, c1Tail) > form new shapelets from the crossover points
14: C2 + JoinArray(c2Head, c2Tail)
15: return C1, C2

2.4 MoSCoW Analysis

This proved to be an impossible section to write before I narrowed down my choice
of core project to implementing J48SS, as the different options available to me would
result is wildly different lists of items to implement. Due to the timescales involved,
my MoSCoW analysis was only really completed when I was already developing the
features listed, which I agree is not conventional or best practice, though I did feel it
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still allowed me to keep track of what I felt I needed to accomplish given the time I had
available. The final version of my MoSCoW Analysis can be found in Table 1.

It is the highest importance for me to ensure that I submit a working classifier that can
process all four types of attribute to the TSML toolkit GitHub repository, as this work
could be of use in further research in time series classification. To this end I also feel
it’s important to ensure the code is easy to maintain in the future, with comments in the
code and Javadoc comments used throughout. I wish to perform tests with sequential
and time series specific data to ensure the classifier is working as expected, comparing
the time series results to those listed in the original J48SS paper to ensure the classifier
is working as expected. It would be nice to test the classifier in an ensemble however
I will leave that as an extra feature should I complete general testing quickly. I don’t
think I will produce a set of tests on the quality of results for numeric and continuous
data as I don’t feel it will be very insightful as data in these formats is processed in the
same way as J48, offering no benefit over that classifier. As the strength of J48SS is
in the ability to test on multiple attribute types within the same execution, it would be
interesting to see how it performs in this task, though I feel it may be difficult to find
suitable test data. From looking at the TSML codebase, I can see that a feature to read
.ts time series data files has recently been added, within the TimeSeriesInstances
class, I would like to utilise this class so that it would not be necessary for users to edit

their data files before use.

2.5 Development of Initial Classifier Components

Due to there being little time to spare between learning how to implement Decision
Trees and implementing J48SS into the TSML toolkit, it was important that sufficient
planning was in place as early as possible. Since I felt it would be difficult to actually
implement the tree beforehand without the necessary knowledge, I felt I could best
focus my efforts on understanding the VGEN and NSGA-II algorithms in their current

implementations.

2.5.1 VGEN

SPMEF, which contains VGEN, is licensed under GNU GPL v3 (FSF, 2007), which
fortunately allows for free sharing, modification and redistribution of the codebase. 1

proceeded to download this library and explore how VGEN works, feeding in data and
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stepping through the program using a debugger. The code used eight classes to process
the patterns and the classes were quite tightly coupled together. I felt this was an issue
as I wanted to avoid adding as many classes to TSML as possible to avoid bloat, but
wanted to ensure the program would still give the correct results when given the same
data. To this end, I decided to start a new project and import just the files that tie into
generating the sequential generator patterns, then slowly remove methods and classes
that were used in doing so. By separating this into a new project I was able to test
changes to the classes through trial-and-error.

2.5.2 NSGA-II

jMetal, which contains the NSGA-II algorithm, is licensed on GitHubZ under the MIT
License for free sharing, modification and redistribution. As with VGEN, the first week
with this algorithm was spent looking through the codebase and understanding how
VGEN works. However, this proved to be far more difficult than I expected. NSGA-II
has multiple variants within the jMetal framework and even the standard form interfaces
with at least thirty other classes in multiple ways. In addition, NSGA-II is a parallel
algorithm which was incredibly difficult to understand, as I had been exposed to very
little threaded Java code in the past.

I cloned the codebase and began by removing classes that I could see were not being
used by the algorithm. In some cases I could see inheritance structures where only
one inherited class was being used by the algorithm, so I could move the implemented
methods from the implemented class into the implementing class before removing the
inheritance and deleting the original implemented class. This was integral to my goal of
ensuring the code is maintainable going into the future, As I don’t intend for the jMetal
code to be expanded upon at all in the future, only that it processes shapelets as defined
in the J48SS paper.

2.6 Classifier Implementation

I felt fortunate that the Machine Learning labs had a focus on classification trees and
featured the J48 algorithm, which gave me practical experience with modifying these

algorithms. Following completion of first five Machine Learning module lab sheets, |

7 https:// github.com/ jMetal/ jMetal
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began to adapt the J48 classifier code to work with the above components. From reading
the J48SS paper I expected that it would be a matter of simply implementing the features
as laid out in the paper, however this turned out to be a much more difficult procedure
than initially estimated. Data entering the two algorithms required some significant
modification and transformation before it could be used by J48SS, and it appeared that
the process was not as clearly documented in the paper as I was initially led to believe,
at least for a reader with no prior knowledge of extracting sequential generator patterns
or shapelet extraction. Development was further stalled due to coursework requirements
from other projects so I decided to concentrate on trying to get NSGA-II working cor-
rectly at least, since to me that was the more important part of the classifier. Even so,
several weeks passed with frustratingly slow progress being made.

It was fortunate, then, that in the final few weeks of the project that I came upon the
stand-alone modified Weka classifier published by the paper’s lead authorﬁ. This gave
me two useful leads in completing the project. Firstly, I was able to run the datasets
mentioned in the J48SS paper on the exact algorithm implemented for the paper, mean-
ing I could verify the results I had matched those in the paper meaning my edits to the
datasets were correct. Secondly, it meant I could build my own, simple toy datasets
and run them in both the original algorithm and my copy to start to nail down what
my algorithm was doing incorrectly. This allowed me some further progress, but swift
progress was made when I was able to decompile the key class files within this build of
Weka to see the exact implementation of the classifier. The biggest realisation I had was
that this implementation of J48SS was using an older version of jMetal (v4.5), which
had a completely different layout to the version I was using in this project (v5.10). I
began from scratch again with the older version of jMetal, applying some of the same
changes I had done previously to this new code and patching in parts of the decompiled
Weka code where I was still uncertain until finally, I had a working classifier. Similar
patching was done on the remaining areas of code over the following week and once 1
verified that my results were matching the ones coming from the stand-alone program, I
moved on to analysing the data. The downside here is that some of the decompiled code
remains untouched in my submitted version, which is poorly constructed and lacking
in comments. This was a conscious decision made in order to begin evaluation of the

working classifier as soon as possible.

8 https:// github.com/ dslab-uniud/ J48SS
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3 Analysis

3.1 Code Functionality

The codebase for the J48SS classifier is included with this project within the tsml.jar
Java Archive file. Also included is the testing scripts used for generating the evaluation,
as well as the data used in those tests. In addition, the classifier will be available on
my branch of the TSML Java toolkitz upon submission, with the aim of having a pull
request certified in the near future as of this writing. Examples of part of the testing

code can be found below.

Listing 1: Testing code used to perform a grid search tuning on J48SS, utilising the
TunedClassifier and ParameterSpace classes of TSML.

private static void performGridSearch(ParameterSpace ps,
AbstractClassifier ¢, String|[] datasetnames) throws
Exception {

DateTimeFormatter dtf = DateTimeFormatter

.ofPattern ("yyyy/MM/dd_HH:mm: ss" );

String tuningLocation = DatasetTools.datasetLocation +
"/ _results/tuning/";
DatasetTools.createDirlfNotExists (tuningLocation);

for (String problem : datasetnames) {
LocalDateTime now = LocalDateTime .now();
System.out. println (dtf.format(now) + ":_ Starting_J48SS" +

n

"tuning_on_" + problem + " _dataset");
TunedClassifier tcGrid = new TunedClassifier(c, ps);

tcGrid .setCloneClassifierForEachParameterEval (false );

Instances data = DatasetTools.loadARFFData
(DatasetTools.datasetLocation + "/" + problem +
"/" + problem + "TS_ALL. arff");

tcGrid . buildClassifier (data);

9 https:// github.com/ uea-machine-learning/ tsml/ tree/ martin-dev
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String [] bestOptions = tcGrid.getBestOptions ();
tcGrid . getTrainResults ();

ClassifierResults res

String filePath = tuninglLocation + "/" + problem;
DatasetTools . writeOptionsToFile(filePath +
"bestoptions.txt", bestOptions);

DatasetTools. writeTestResultsToFile (filePath +

"results.csv", res);

Listing 2: Testing code to perform cross validation using the CrossValidationEvaluator
and ClassifierResults classes of TSML.

private static void performCrossValidation (
CrossValidationEvaluator cv, String[] datasetNames)
throws Exception {
DateTimeFormatter dtf = DateTimeFormatter
.ofPattern ("yyyy/MM/dd_HH:mm: ss" );

for (String problem : datasetNames) {
Instances data = DatasetTools.loadAndConcatARFFData
(DatasetTools.datasetLocation + "/" + problem +
"/" + problem);
Classifier[] classifiers = mew Classifier[]
{new LearnShapelets()}; // do more if time allows

String experimentsDir = DatasetTools.datasetLocation +
"_collated/Predictions/" + problem + "/";
DatasetTools.createDirlfNotExists (experimentsDir);

for (Classifier ¢ : classifiers) {
LocalDateTime now = LocalDateTime .now();

n

System.out. println (dtf.format(now) + ":_ Starting_ " +

" "

c + on + problem + " _dataset.");

[} [}
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ClassifierResults res =
cv.crossValidateWithStats (c, data);

String cName = res.getClassifierName ();
DatasetTools. writeTestResultsToFile (experimentsDir +
cName + " _results.csv", res);

// repeat for the TS_ data to test j48ss classes
data = DatasetTools.loadARFFData(DatasetTools
.datasetLocation + "/" + problem + "/" + problem +
"TS_ALL. arff");

J48SS tunedJ48ss = DatasetTools.bestJ48ssSettings
(problem); // load settings from tuning
classifiers = new Classifier[] {mew J48SS (),
tunedJ48ss };

int cNum = 0; // Since these classifiers are both
"J48SS", we need a way to tell them apart

for (Classifier ¢ : classifiers) {
LocalDateTime now = LocalDateTime .now();
System.out. println (dtf.format(now) + ":_ Starting " +
"J48SS_" + cNum + " _on_" + problem + "  ,dataset.");

ClassifierResults res =
cv.crossValidateWithStats (c, data);

String cName = res.getClassifierName ();
DatasetTools. writeTestResultsToFile (experimentsDir +
¢cNum + "_" + cName + " _results.csv", res);
cNum++;
}
}
LocalDateTime now = LocalDateTime .now();

System . out. println (dtf.format(now) +
":_ Processing_,complete.");
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Documentation of the project was achieved largely through Javadoc comments where
necessary, which have been archived into HTML format and included with this distribu-
tion. I have done my best to document as much of the project as possible knowing that
it will need to be maintained by others in the future. Legal notices on each class were
also added to ensure each page remains consistent with the rest of TSML.

Although the codebase being submitted is not perfect regarding commentary, it’s
readable for the most part and I have the full intention of ensuring the version being
submitted to the TSML codebase to be fully updated with commentary added in the
weeks following project submission.

An additional feature that I added during development was to hide messages from
NSGA-II telling the user about shapelet details found and number of instances being
scanned as they could sometimes print at several per second, making them useless out-
side of debugging. These messages can be toggled back on by calling j48ss.setVerbosity (true)

before building the classifier.

3.2 Data Description

The second part of my project involves testing my implementation of J48SS to check
it’s classification efficacy. The data used for this task was a set of twenty randomly se-
lected datasets from the "tscProblemsSS"B collection in the UCR UEA archive, which
includes some sets used in J48SS paper. Data comes pre-separated into train/test sets
but to avoid over-fitting, I have chosen to combine them and perform a 10-fold cross
validation per data set in all experiments. The names and characteristics of these data
sets can be found in Table 2. All sets were specifically adapted for J48SS by transform-
ing all attributes into a single string, aside from the class attribute, and prepending TS_
to the attribute name. This enables J48SS to pick up that the attribute is of a time series
type and correctly perform shapelet transformations on it. These files can be found with
others the zip file with this report.

10 https:// github.com/ uea-machine-learning/ tsmi/ blob/ master/ src/ main/ java/ experiments/ data/
DatasetlLists.java
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3.3 Classifier Description

The J48SS classifier with default parameters was tested alongside a version of J48SS
tuned for each dataset and a FastShapelets classifier with default settings. It was my
intention to also test LearnShapelets and ShapeletTree classifiers with default settings
here too, but sadly initial tests showed these would take too long to process on my
selected data sets and results would not ready by the time this report was due. I would
have liked to have tested ShapeletTransformClassifier against an ensemble of J48SS
classifiers but again, a simple test showed this classifier would not process all twenty
datasets in time to allow for a thorough analysis.

3.4 Testing Methodology

The first test carried out was to tune the J48SS on each time series dataset to find the
best parameters for later tests. I also looked to compare my tuning to those conducted in
the original paper to see if our results match and if not, to perhaps explore why. Initially
the plan was to outdo the J48SS paper by tuning my J48SS on a grid search of four
of the five custom parameters for shapelet extraction: crossover probability, mutation
probability, number of evaluations and weight used for extraction of the final shapelet.
I quickly found, however, that this would be too many settings to allow tuning to be
done in a reasonable timeframe, so I decided to pare this back to just the two parameters
featured in the original paper, as shown in Table 3. Each grid search result was trained
once on a ten fold cross validation of each dataset.

The second test is a evaluation of J48SS, both tuned and untuned, against Fast-
Shapelets. This is to evaluate how effective tuning is as well as how effective J48SS is
at classification against the original implementation, as well as against another Shapelet
classifier. Tests will also be timed to see if any classifier has an advantage there. My
null hypothesis here is that the tuned J48SS should be more accurate compared to its
untuned variant by a statistically significant margin. I also expect to see J48SS be more
accurate than FastShapelets by a statistically significant margin, as well as perform sig-
nificantly faster due to the parallel capability of the NSGA-II implementation. I utilised
TunedClassifier for tuning and wrote ClassifierResults to file for later

comparison.
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4 Evaluation

4.1 Analysis of Results
4.1.1 Tuning

Table 4 presents the results from tuning J48 with the parameters listed in Table 3. If we
look a table 5 of the original paper by Brunello et al. (2019), we can see that their tuning
resulted in different values for patternWeight and numEvals. Adiac was 0.4 and 800,
respectively, whereas I found 800 and 0.9 to give the greatest accuracy. With Coffee,
the paper found 800 and 0.0 to be the best fit whereas I found 800 and 0.9 the most
accurate. Gunpoint was 800 and 0.8 on the paper but my testing found 400 and 0.8 to
be the best. On Lightning7, both our best tuning parameters matched. Medicallmages
was a close match, with the paper finding 400 and 0.2 as the best and I found 400 and
0.4 the most accurate. With Symbols, we were close again at 800 and 1.0 for the paper
and 800 and 0.9 for me. Finally, on the Trace dataset, there was a difference in results as
the paper found 400 and 0.5 to be the best but I found 800 and 0.7 delivered the highest
accuracy. Most of these results are within a margin of error, but it is unusual that some
parameter values are quite different. One explanation of this is that variations introduced
by randomness in the shapelet crossover calculation drove some results to be slightly
better or worse in certain cases. There is also the possibility that my implementation is
flawed in a way I have yet to pick up on, which we may find from evaluating the second
test results.

4.1.2 Classifying

It was as I write this last section on evaluating my classifier in the final two days of the
project that I realised I made three fundamental errors with my testing strategy.

Firstly, I made the decision to use a class I wasn’t familiar with called CrossVali-
dationEvaluator in order to produce my cross validation results, rather than use code
I’d written previously and confirmed was correct. Briefly browsing the CrossValida-
tionEvaluator code, I assumed that it would save the results of all ten cross validations
to a ClassifierResults object that I could save to disk using code I’ve written in the past.
This turned out to be wrong, and in fact only the final fold was saved to disk. Whether
the data was stored in the object and I failed to recall it correctly or whether the object
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only stored one copy, I'm unsure of, but either way the test results were incorrectly
saved.

Secondly, I made a mistake in the folder structure used to save the results. Instead of
saving each classifier within a collated folder and saving the results of each dataset in
individual folders within a predictions folder inside the classifier folder, I accidentality
saved my dataset folders inside the collated folder and each classifier as a folder within
them. At the time I thought it wouldn’t be an issue, but even if I had not made my first
mistake, this one would have ensured using the CollateResults.collate() tool would have
been much more difficult. With this mistake, I was unable to automatically retrieve
results for Balanced Accuracy, NLL, AUROC and so on. Although it’s possible to
retrieve this data manually from the saved ClassifierResults data, in my case it would
not be useful due to the first mistake.

Thirdly, I recognise that I did not leave enough time during the end of my project
to rerun these experiments, should I come across issues like the above. Much of the
final two weeks was spent scrambling to ensure the classifier was fit for purpose and
predicting correctly that I used up the time I had put aside for any issues. On top of this
I had already made mistakes not previously mentioned in this report, such as running
incorrect classifiers or incorrectly setting certain parts of classifiers or code, leading to
crashes that went undiscovered for many hours. These things combined burned into the
small amount of leeway I had remaining, leading to the above two mistakes to not leave
me enough time to re-evaluate.

Should my experiments have been successful, this section would have explored the
accuracy, balanced accuracy, Negative Log Likelihood and AUROC statistics, explain-
ing what each of the figures represents and using plots to explore the differences in the
classifiers tested. A Critical Difference Diagram would be used to show if there was a
difference between the classifiers in the mentioned statistics, and by using a Friedman
test I would explore if the differences were statistically significant enough to break out
of critical distance cliques and either accept or reject my null hypotheses stated in the
testing methodology section.

The results files generated, as well as the flawed testing code, have been included

with this report for your perusal.
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4.2 Project Analysis

The brief given when choosing a potential project mentioned described contributing to
an open source toolkit to assist the Time Series Machine Learning group at UEA. With
the submission of my classifier, I hope 1 have achieved this goal. However without
the data to understand how useful the classifier is at this time, the usefulness of this
contribution is questionable in my mind. This was by far the most challenging project
I have worked on, both in terms of difficulty of completing the work as well as trying
to balance the workload with other ongoing commitments. Until now I did not touch
on the fact that early tasks I wished to compete were missed, such as making a basic
change to the toolkit and updating documentation. These were tasks that always seemed
to be pushed back each week as I focussed on other work, until I felt it was too late to
begin doing them. Submissions of the Literature Review and progress report were both
missed due to issues I was having at the time, and not making contact with my advisor to
explain this made it difficult to get back on track with the first half of this project. What
work was completed on these things, however, was later expanded upon and added to
this report.

Table 5 details how much of the MoSCoW table was achieved during the second
semester. As you can see, seven of the twelve objectives were completed fully or close
to it, which include submitting the classifier to the repository, adding the ability to pro-
cess sequential and time series data to the classifier, adding parameters to tune those
additions and tuning it. In addition, the code was commented and easy-to-read, though
I feel this may be an ongoing process within the toolkit. One of the twelve objectives
was attempted, to test the classifier against time series data, but was not successful as
detailed above. The remaining four objectives that were not completed were to test with
sequential data, to test as part of an ensemble, to test on multiple attributes in one dataset
and to implement the ability to handle .ts data files using the TimeSeriesAttributes class.
I would be interested in attempting to integrate TimeSeriesAttributes objects into the
classifier in the future should I have the time.

My preliminary testing showed an increase in accuracy using the time series format-
ted data compared to the numerical version of the same data. It was an early intention
to be able to run the classifiers on both versions of each data set for comparison but
sadly these experiments were not completed in time for inclusion in this report. I also

wished I had the time to test against more classifiers, especially the shapelet classifiers
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LearnShapelets, ShapeletTransformClassifier and ShapeletTree,
though sadly the issues during development left me only a week to run experiments in-
cluding model tuning, which was not enough time to get a full twenty datasets evaluated
with these much slower algorithms. This was the case even before I realised the error in
testing.

I realised after starting the evaluation testing that was probably a mistake to use dif-
ferent data from the J48SS paper. If the same datasets were used it would have allowed
a much clearer comparison between my implementation and the original - it would have
been interesting to see if my results compared to the original within an acceptable mar-
gin of error.

My other modules ended up taking up far more of my time that I wished they had
done, and I feel I put in more effort to projects in those modules than what they war-
ranted. With the time I could’ve saved from not worrying about those projects as much,
it’s likely I could have had this one working sooner leaving me more time for testing

and possibly avoiding the issues I had at the last minute.

4.3 Further Changes and Additions

Figure 3 shows an issue I have remaining with the system. I still feel there is more
that can be done to reduce complexity, especially when it comes to the instance where
BestShapeletProblem creates a BestShapeletSolutionType object, but the BestShapelet-
SolutionType class contains a method which takes a BestShapeletProblem object as a
parameter, leading to confusing areas of composition and dependencies. This is some-
thing I would be interested in working on in the toolkit in the future.

In the time since the publication of the original J48SS paper, an update to the NSGA-
IT algorithm has been published in jMetal called NSGA-III (). Although my knowledge
and research on this algorithm is limited, I can see that it includes improvements that
could be of use to this implementation of J48SS. If I had time during the project, I
would have been interested in implementing this algorithm and running experiments to
compare the use of this revision to the implemented version, but sadly time is always
the largest restriction to any project. Nevertheless, this finding does leave the door open
to further development in the future.

After completing this project and my Machine Learning module labs and coursework

project, I regret that I didn’t pick to create a visualisation tool for TSML. As it stands, |
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feel the toolkit could benefit greatly from a native Java system for generating visual data
quickly and easily from ClassifierResults objects or CSV results files, as this
is a necessity for allowing authors of papers and reports to easily present results, and
allowing readers to interpret raw data. I’ve had an interest in expanding my knowledge
of Java to the creation of imagery (graphics, posters and general image design) but have
yet to give it a try. With TSML being an Open Source project, I feel motivated to learn
how to create visualisations in my own time knowing that if my code is good enough
for use, it could benefit other people in the future.

An addition that could be useful to TSML in a future project is the ability to run exper-
iments on multiple datasets concurrently. Figure 5 shows how the processing of a dataset
using the Fast Shapelets classifier is restricted to the use of a single core. The abil-
ity to leverage the remaining cores to process other single-thread classifiers would allow
research such as grid search tuning, for example, to be carried out on more parameters
or more datasets in the same amount of time, allowing for more refined models to be
used. The downside of this is that you could not guarantee the accuracy of timing exper-
iments using this technique as each core will generally process data at different speeds
due to natural variances in the CPU architecture. In addition, this technique will require
far more memory to be required. Experiments with Fast Shapelets showed most
datasets requiring 2.5GB to 3.5GB of memory each, so running seven or eight of these
experiments in tandem, even with 32GB of memory available, could be enough to force
the swap file to move data onto the hard drive and massively slow operations. Care
would need to be taken to ensure that a balance is maintained, which could be difficult

to design around.

5 Conclusion

Although there were many challenges to overcome with this project, I feel proud of the
project I've documented in this report and I wish I had the entire year to work on this
project without work from the other modules taking my time away from it, as I feel
there was so much more I could have contributed to the TSML toolkit. I'm hoping that
I will have such time, at least in the near future, to contribute further enhancements and

play a small role in furthering the research into time series machine learning.
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Figure 1: An example segment of time series data with time on the x axis. A shapelet of
the series has been highlighted in green.

Figure 2: A simplified class diagram of the decision tree segment of the classifier. The

root class is J48SS, called by the user.
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Figure 3: A simplified class diagram of the jMetal segment of the classifier, containing
the NSGA-II algorithm. Code enters from the decision tree at C45Split and
BinC45Split, depending on if binary splits are used.
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Figure 4: A simplified class diagram of the SPMF segment of the classifier, containing
the VGEN algorithm. Code enters from the decision tree at C45Split and
BinC45Split, depending on if binary splits are used.
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Figure 5: A Screenshot from Windows Task Manager showing CPU usage on an 8 core

Intel CPU with HyperThreading running the FastShapelets classifier.

Reg: 100225776 46



CMP-6013Y

Table 1: MoSCoW Analysis of project requirements

Requirement Priority
Open a Pull Request on the TSML toolkit GitHub repository

1. o . . Must Have
submitting a working classifier
Integrate the ability to process time series data into the classi-

2. Must Have
fier

3. | Integrate the ability to process sequential data into the classifier | Must Have

4. | Test the accuracy of the classifier against time series data Must Have

5. | Test the accuracy of the classifier against sequential data Must Have
Add the ability to tune parameters for time series and sequen-

6. . Should Have
tial data
Ensure the code is correctly commented throughout, including

7. . Should Have
Javadoc commenting
Ensure the code imported from other libraries is as easy to read

8. } Should Have
as possible
Perform tuning experiments on the classifier against multiple

0. Should Have
sets of data
Perform tests with multiple J48SS in an ensemble against other

10. ) ) Should Have
ensembles on time series data
Test the accuracy of the classifier on multiple attribute types in

11. Could Have
one dataset

12. | Implement a way for the classifier to handle .ts files Could Have
Test the accuracy of the classifier against similar classifiers nu-

13. . Won’t Have
meric data
Test the accuracy of the classifier against similar classifiers on

14. . Won’t Have
continuous data

15. | Perform ensemble tests using numeric or continuous data Won’t Have
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Table 2: Data characteristics of the datasets used

@» %]
Name F ;5 & | Class Distribution
g < @)
N <
20/23/20/20/20/20/20/25/20/20/20
) /26/20/20/21/20/20/22/26/21/20/
Adiac 781 | 176 | 37
20/20/23/29/20/20/20/20/20/20/20
/20/20/20/25/20
Car 120 | 577 | 4 30/30/30/30
CBF 930 | 128 |3 310/310/310
Coffee 56 286 |2 29/27
112/ 178 /176 / 171 / 176 / 187 / 149 / 273 /
FaceAll 2250 | 131 | 14
140/135/48/106/327 /72
109/91/61/54/38/34/32/24/24/22/22
) /22/21/18/16/14/14/13/13/13/12/11
FiftyWords 905 | 270 | 50
/10/10/10/10/10/9/9/9/9/9/8/8/8
1818718181717/ 7/7/17171717/6/6
Fish 350 | 463 |7 50/50/50/50/50/50/50
GunPoint 200 | 150 |2 100/ 100
Haptics 463 | 1092 | 5 78/92/93/100/100
Herring 128 [ 512 |2 77151
Lightning7 143 | 319 |7 18/17/14/19/15/38/22
Meat 120 | 448 |3 40/40/40
Medical
1141 | 99 10 | 112/65/75/48/45/23/49/24/7106/594
Images
OSULeaf 442 | 427 | 6 66/84/75/97/82/38
ScreenType 750 | 720 | 3 250/250/250
) 757175175175 7175/7175/7175/7/75/175/175/175
SwedishLeaf | 1125 | 128 | 15
1751757175775
Symbols 1020 | 398 | 6 181/162/167/181/162/167
Toe
. 268 | 227 |2 140/ 128
Segmentationl
Trace 200 | 275 |4 50/50/50/50
Worms 258 | 900 |5 109/44 /357451725
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Table 3: Parameters for tuning J48SS

Default
Name Values

Value
numEvals 200, 400, 800, 1200 800
patternWeight | 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,0.9, 1.0 | 0.75

Table 4: Results from tuning the J48SS classifier

Name numEvals patternWeight
Adiac 800 0.9
Car 1200 0.7
CBF 1200 0.8
Coffee 800 0.9
FaceAll 200 0.8
FiftyWords 400 0.7
Fish 800 0.8
GunPoint 400 0.8
Haptics 200 0.3
Herring 400 1.0
Lightning7 800 0.9
Meat 400 0.5
Medical

Images 400 0.5
OSULeaf 400 0.7
ScreenType 200 0.9
SwedishLeaf | 1200 0.9
Symbols 800 0.9
Toe

Segmentation] 1200 06
Trace 800 0.7
Worms 400 0.9
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Table 5: Review of objectives listed in the MoSCoW Analysis

Requirement Priority Complete?
Open a Pull Request on the TSML toolkit

1. | GitHub repository submitting a working classi- | Must Have Yes
fier
Integrate the ability to process time series data

2. |, . Must Have Yes
into the classifier
Integrate the ability to process sequential data

3. |, . Must Have Yes
into the classifier
Test the accuracy of the classifier against time

4. . Must Have Attempted*
series data
Test the accuracy of the classifier against se-

5. . Must Have No
quential data
Add the ability to tune parameters for time se-

6. ] . Should Have | Yes
ries and sequential data
Ensure the code is correctly commented

7. . . . Should Have | Yes
throughout, including Javadoc commenting
Ensure the code imported from other libraries is

8. ) Should Have | Yes
as easy to read as possible
Perform tuning experiments on the classifier

9. ) ) Should Have | Yes
against multiple sets of data
Perform tests with multiple J48SS in an ensem-

10. ) ) ) Should Have | No
ble against other ensembles on time series data
Test the accuracy of the classifier on multiple

11. . . Could Have | No
attribute types in one dataset
Implement a way for the classifier to handle .ts

12. Could Have | No
files
Test the accuracy of the classifier against similar

13. . . Won’t Have | N/A
classifiers numeric data
Test the accuracy of the classifier against similar

14. . . Won’t Have | N/A
classifiers on continuous data
Perform ensemble tests using numeric or con-

15. | . Won’t Have | N/A
tinuous data
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