
CMP 5014Y Data Structures and Algorithms -

Coursework Assignment 1

Martin Siddons

Contents

1 Feature Vector - Formal Description 2

2 Feature Vector - Run-time Complexity Analysis 2

3 Feature Vector - Implementation 3

4 Feature Vector - Timing Experiments 4

5 Document Similarity Distance - Formal Description 7

6 Find Nearest Documents - Formal Description 7

7 Find Nearest Documents - Run-time Complexity Analysis 8

7.1 Analysis of Fundamental Operation findFeatureVectors 8

7.2 Analysis of Fundamental Operation findSimilarities 9

8 Find Nearest Documents - Implementation 10

9 Find Nearest Documents - Timing Experiments 13

1

1 Feature Vector - Formal Description

Algorithm 1 CalculateFeatureVector(D,o Q,l) return F

Require: Array D of length o containing Strings. Array D of length l containing Strings.
Ensure: F, the Feature Vector of (D,Q)
1: F← 0 . initialise array F to store Feature Vector
2: for i← 1 to l do
3: c← o . initialise counter
4: for j ← 1 to o do
5: if Qi := Di then
6: c← c+ 1

7: Fi ← c . insert the count into position i of array F
return F

2 Feature Vector - Run-time Complexity Analysis

The fundamental operation is: c← c+ 1. The case we are looking for is worst case - Order O.
The Runtime Complexity function is as follows. The fundamental operation happens once on
every loop, within another loop, therefore for any given value of o and l, we get

tcalculateFeatureV ector =
l∑

i=1

o∑
j=1

1 (1)

For solving the summations, we first remove the rightmost summation and apply the summation
rule

p∑
i=1

1 = p (2)

on the innermost loop to give o, which leaves

tcalculateFeatureV ector =

l∑
i=1

o (3)

Then we deal with the remaining summation using the rule

p∑
i=1

a = a

p∑
i=1

1 = ap (4)

to get
tcalculateFeatureV ector = lo (5)

where l ≤ o.
By characterising the above Runtime Function we find that the worst case for this algorithm is
Order n ×m, or O(nm). In addition, I’ve found that the best case and average cases can be
improved via sorting or dividing the Document into bins of words, but this would not improve
the worst case and so I’ve settled with the näıve approach as shown above.

2

3 Feature Vector - Implementation

public static int[] calculateFeatureVector (String[] document,
String[] dictionary){

int size = dictionary.length;
int[] featureVector = new int[size];
int counter;

for (int i = 0; i < dictionary.length; i++) {
counter = 0;
for (int j = 0; j < document.length; j++) {

if (dictionary[i] == document[j]){
counter++;

}
}
featureVector[i] = counter;

}
return featureVector;

}

Code used for testing:

public class Main {

public static int[] calculateFeatureVector (String[] document,
String[] dictionary){

int dictSize = dictionary.length;
int[] featureVector = new int[dictSize];
// initialise featureVector as the same size as the dictionary.

int counter;
long[] timeTaken = new long[10]; // array size 10 as we’re performing 10 tests
long startTime, endTime;

for (int k = 0; k < 10; k++) { // perform 10 tests at once
startTime = System.nanoTime(); // start the timer

for (int i = 0; i < dictionary.length; i++) {
counter = 0;
for (int j = 0; j < document.length; j++) {

if (dictionary[i] == document[j]) {
counter++;

}
}
featureVector[i] = counter;

}

endTime = System.nanoTime(); // end timer, as feature vector has been found
timeTaken[k] = endTime - startTime; // add the time to the timer array

}

// print the timing results in a row

3

System.out.println("Timing Experiment results:");
for (int i = 0; i < 10; i++) {

System.out.print(timeTaken[i] + " ");
}
System.out.println();

return featureVector;
}

public static void main(String[] args) throws Exception {
// generate the dictionary
String[] dict = CourseworkUtilities.generateDictionary(10000, 5);
String[] doc = CourseworkUtilities.generateDocument(dict, 10000);
int[] featureVector = calculateFeatureVector(doc, dict);

}
}

4 Feature Vector - Timing Experiments

As we previously found, the Order of this algorithm is O(nm). By using the runtime complexity
function

tcalculateFeatureV ector =
l∑

i=1

o∑
j=1

f (6)

where f is the time taken to perform the fundamental operation, we could work out how long
each iteration will take to compute. I first attempted using System.nanoTime() to find the
average time to compute f directly, across ten sets of 10,000 fundamental operations (where
l = 10 and o = 1, 000) and found it was 77.70 nanoseconds. However, this varies between 55 and
96 nanosecond averages across the ten sets, and each fundamental operation is given rounded
to the nearest 100 nanoseconds, so this approach does not work in practice. I understand that
this is the case since, although nanoTime() provides nanosecond precision, it doesn’t provide
nanosecond accuracy.

To get a better idea of how the algorithm performs, I next calculated f indirectly using five
different values for o where the amount of fundamental operations increases by a factor of ten
on every set, while keeping l fixed to 10, as l must always be equal or less than o. I performed
timing tests on each combination of values 100 times each, totalling 500 separate experiments
in order to ensure I had the closest approximation. I then used four different values for o,
increasing again by a factor of ten each time while keeping l fixed to 100. I completed 400
separate experiments on this data set. My third value for l was fixed to 1,000 with three
variations for o, for a total of 300 tests. Finally, I performed 100 tests where both l and o were
equal to 10,000. I have compiled a graph below tracking the value of f across the different values
of l and o, labelled as Figure 1. Figure 2 shows how the average time to compute one set of
operations differs depending on how many total operations are being performed.

Figure 1 gives the result I would expect, as the number of fundamental operations increases,
so too does the time taken to compute the Feature Vector. This is not surprising based on
the analysis we’ve already performed. This small variation could be down to characteristics of
the Operating System and Processor used, including the amount of data held in cache and how
much time the operating system gives our process to run. I attempted to minimise the latter by
running the algorithm in ’Realtime’ priority, closing as many unnecessary processes as possible
and performing as many separate tests to get the closest average as possible. We can tell that in
general, there is little to no variation within a group of a certain number of operations despite

4

Figure 1: Comparisons performed plotted against time taken to compute a feature vector.

Figure 2: Comparisons performed plotted against time taken per comparison.

5

changing the sizes of the Dictionary and Document. i.e. the compute time is mostly the same
where the Dictionary size is ten words and the Document size is 100,000 words compared to
when the Dictionary and Document size are 1,000 words each. This is also as expected as the
algorithm’s Runtime Complexity Function is lo.

However, when examining Figure 2, we notice something more unusual. It seems the time taken
to perform one fundamental operation loop of our algorithm does not scale linearly with the
number of fundamental operations performed, as would be expected. In fact, it appears that
the time taken to perform one average fundamental loop is in the form of a limit function, such
that as x (the total number of operations performed) approaches infinity, the time taken for one
fundamental operation loop approaches 1.74µs, with my test setup. I imagine this isn’t due to
a variance in the time it takes the fundamental operation to compute, but rather that as the
number of operations increases, the less likely the worst case is followed, so the algorithm tends
more towards the average case, which we have not covered here. This makes it difficult to give
an estimate on how long the algorithm might take to compute in the real world without finding
the limit function, but we could say where lo > 10, 000, 000

t = k × l × o (7)

where k is the time it takes for one average operation to be performed on your chosen hardware,
1.7µs here. Finally, I wish to note that it’s possible to test with longer length words however I
chose not to perform testing on this as the data generated would begin to become unmanageable.

6

5 Document Similarity Distance - Formal Description

Algorithm 2 findDocumentSimilarity(A1,n B,n) return s

Require: Integer arrays A and B of length n representing feature vectors.
Ensure: The total distance between the two given feature vectors as an integer, s.
1: s← 0 . initialise document similarity distance variable
2: for i← 1 to n do
3: s← s+ |Ai −Bi| . Add the absolute difference between the input integers to s

return s

6 Find Nearest Documents - Formal Description

ADT :

Algorithm 3 ListInitialise() return L

Ensure: An ADT, L.
1: head← null . initialise head and tail to null
2: tail← null
3: return L

Algorithm 4 NodeInitialise(d1, d2, dist)

Require: d1, an integer representing the first comparison document. d2, an integer representing
the second comparison document. dist, the document similarity distance between the two
passed documents.

1: doc1← d1
2: doc2← d2
3: similarity ← dist
4: next← null

Algorithm 5 AddNode(L, d1, d2, dist)

Require: L, a previously initialised ADT. d1, an integer representing the first comparison
document. d2, an integer representing the second document. dist, the document similarity
distance between the two passed documents.

1: node← NodeInitialise(d1, d2, dist)
2: if L.head := null then
3: L.head← n
4: if L.tail NOT := null then
5: L.tail.next← node
6: L.tail← node

7

Algorithm :

Algorithm 6 findNearestDocuments(D,f Q,l) return E

Require: D, a list of length f of Documents. Q, a Dictionary.
Ensure: An integer array E of length n representing the most-similar document to each entry

in D.
1: E← 0
2: B← 0 . initialise list of arrays B to store feature vectors
3: L← ListInitialise() . initialise the ADT
4: for i← 1 to f do
5: Bi ← calculateFeatureVector(Di,Q) . call the algorithm from question 1 for each

document in the list
6: for i← 1 to f do
7: for j ← (i− 1) to f do
8: s← findDocumentSimilarity(Bi,Bj) . call the algorithm from question 5
9: AddNode(L, i, j, s) . add the document number and s to the list

10: for node← L.head to null do
11: if node.similarity := Cnode.doc1 then . check the node’s similarity on doc1
12: Enode.doc1 ← node.doc2
13: Cnode.doc1 ← node.similarity

14: if node.similarity := Cnode.doc2 then . check similarities for doc2
15: Enode.doc2 ← node.doc1
16: Cnode.doc2 ← node.similarity

17: node← node.next
return E

7 Find Nearest Documents - Run-time Complexity Analysis

With this algorithm we have many different components so we should be careful to select the
correct component as the fundamental operation. Starting with the ADT algorithms, they all
complete their work without iteration, therefore in Constant time, so it’s unlikely they are what
we are looking for.

Looking at the algorithm it’s difficult to see which operation could be considered the Fundamen-
tal so I will do analysis on two operations, the computation using calculateFeatureVector
which we will call findFeatureV ectors - and the one using findDocumentSimilarity which
we will call findSimilarities - in order to ensure we analyse the correct one.

7.1 Analysis of Fundamental Operation findFeatureVectors

The case we are analysing is the worst case - Order O. As we’ve already previously calculated
the innermost part of the runtime complexity function, we can start with

t = lo+ 1 (8)

where l is the length of a Dictionary and o is the length of a Document. To this we can add the
outer loop, which iterates through the entire list of documents of count f to make

tfindFeatureV ectors =

f∑
i=1

lo+ 1 (9)

8

We can remove the constant and resolve the summation using the rule

tfindFeatureV ectors =

p∑
i=1

ab = ab

p∑
i=1

1 = abp (10)

to leave
tfindFeatureV ectors = flo (11)

where l ≤ o and f can be any value greater than two independent of lo.

By characterising this runtime function we find that the worst case for this algorithm is Order
n×m× f , or O(nmf). Again, this could partially be improved via sorting but that would not
change the worst case.

7.2 Analysis of Fundamental Operation findSimilarities

We will again be analysing the worst case - Order O. First, we need to find the runtime com-
plexity for findDocumentSimilarity, as designed in question 5, plus our AddNode operation. As
AddNode is constant this works out to be

1 +

n∑
k=1

1 (12)

where n is the number of elements of the passed feature vectors, which will always be identical
to the variable l, above.

Working back from here, we perform those operations on i+1 entries, so adding both remaining
loops gives us the complexity:

tfindSimilarities =

f∑
i=1

f∑
j=i+1

1 +

n∑
k=1

1 (13)

To simplify this, first we remove the constants and apply the rule

p∑
i=1

1 = p (14)

to give

tfindSimilarities =

f∑
i=1

f∑
j=i+1

n (15)

Next, we can use the rule
p∑

i=q

a = ((p− q) + 1)× a (16)

to give

tfindSimilarities =

f∑
i=1

((f − (i+ 1)) + 1)n (17)

To simplify the final sigma, we first need to reduce it using the combined rule

p∑
i=1

a(p− i) = 1/2a(p− 1)p (18)

9

and remove the constants to give

tfindSimilarities =
n(f − 1)f

2
(19)

and finally, remove the constants once again gives

tfindSimilarities = nf2 (20)

Characterising this runtime function gives worst case Order n×m2 or O(nm2).

As n = l, the defining attribute between the two functions is the size of o. In cases where o > f ,
findFeatureVectors will have longer runtime, and in cases where o < f , findSimilarities will have
the longer runtime. Taking a näıve approach, I feel you can expect a document to have many
hundreds or thousands of words on average but the documents to be compared could be on the
order of tens to maybe hundreds, making findFeatureVectors have the longer runtime in the
majority of situations, in my opinion.

8 Find Nearest Documents - Implementation

public static int findDocumentSimilarity(int[] doc1, int[] doc2){
int similarity = 0;
for (int i = 0; i < doc1.length; i++) {

similarity = similarity + Math.abs(doc1[i] - doc2[i]);
}
return similarity;

}

public static int[] findNearestDocuments (String[][] documentList,
String[] dictionary) {

int dictLength = dictionary.length;
int docListLength = documentList.length; // ’f’ in formal description.
int[] dsdList = new int[docListLength]; // ’E’ in formal description.
int[][] featureVectors = new int[docListLength][dictLength]; // ’B’ in

//formal description.
LinkedList documentSimilarities = new LinkedList(); // ’L’ in formal

//description.

// find the feature vectors for each document in the list.
for (int i = 0; i < docListLength; i++) {

featureVectors[i] = calculateFeatureVector(documentList[i], dictionary);
}

// fill the linkedList with the results from comparing feature vectors.
// as the result for comparing doc1 against doc2 is the same for comparing
// doc2 against doc1, we only have to compare each pair once, meaning we
// only need to do (n(n+1))/2 operations, rather than nˆ2.
for (int i = 0; i < docListLength - 1; i++) {

for (int j = i+1; j < docListLength; j++) {
int distance = findDocumentSimilarity(featureVectors[i],

featureVectors[j]);
documentSimilarities.AddNode(i, j, distance);

}
}

10

// For each document, find the document with the closest match to it.
int closest[] = new int[docListLength]; // ’C’ in formal description.
Arrays.fill(closest, 999999999);

for (ListNode node = documentSimilarities.getHead();
node != null; node = node.getNext()) {
int doc1 = node.getDoc1();
int similarity = node.getSimilarity();
int doc2 = node.getDoc2();

if (similarity < closest[doc1]){
dsdList[doc1] = doc2;
closest[doc1] = similarity;

}
if (similarity < closest[doc2]){

dsdList[doc2] = node.getDoc1();
closest[doc2] = similarity;

}
}
return dsdList;

}

Complete code used for testing:

package com.company;
import java.lang.Math;
import java.util.Arrays;

public class Main {
public static int[] calculateFeatureVector (String[] document,

String[] dictionary){
int dictSize = dictionary.length;
int[] featureVector = new int[dictSize];
// initialise featureVector as the same size as the dictionary.
int counter;

for (int i = 0; i < dictionary.length; i++) {
counter = 0;
for (int j = 0; j < document.length; j++) {

if (dictionary[i] == document[j]) {
counter++;

}
}
featureVector[i] = counter;

}
return featureVector;

}

public static int findDocumentSimilarity(int[] doc1, int[] doc2){
int similarity = 0;

11

for (int i = 0; i < doc1.length; i++) {
similarity = similarity + Math.abs(doc1[i] - doc2[i]);

}
return similarity;

}
public static int[] findNearestDocuments (String[][] documentList,

String[] dictionary) {
int dictLength = dictionary.length;
int docListLength = documentList.length; // ’f’ in formal description.
int[] dsdList = new int[docListLength]; // ’E’ in formal description.
int[][] featureVectors = new int[docListLength][dictLength]; // ’B’

// in formal.
LinkedList documentSimilarities = new LinkedList(); // ’L’ in formal

//description.

// Timing test variables
long[] timeTaken = new long[100];
long startTime, endTime;

for (int j = 0; j < 100; j++) {
startTime = System.nanoTime(); // start the timer

// find the feature vectors for each document in the list.
for (int i = 0; i < docListLength; i++) {

featureVectors[i] = calculateFeatureVector(documentList[i], dictionary);
}

endTime = System.nanoTime(); // end timer
timeTaken[j] = endTime - startTime; // add the time to the array

}

// print the timing results in a row
System.out.println("Timing Experiment results:");
for (int i = 0; i < 100; i++) {

System.out.print(timeTaken[i] + " ");
}
System.out.println();

// fill the linkedList with the results from comparing feature
// vectors. As the result for comparing doc1 against doc2 is the
// same for comparing doc2 against doc1, we only have to compare
// each pair once, meaning we only need to do (n(n+1))/2 operations,
// rather than nˆ2.
for (int i = 0; i < docListLength - 1; i++) {

for (int j = i+1; j < docListLength; j++) {
int distance = findDocumentSimilarity(featureVectors[i],

featureVectors[j]);
documentSimilarities.AddNode(i, j, distance);

}
}

// For each document, find the document with the closest match to it.

12

int closest[] = new int[docListLength]; // ’C’ in formal description.
Arrays.fill(closest, 999999999);

for (ListNode node = documentSimilarities.getHead();
node != null; node = node.getNext()) {
int doc1 = node.getDoc1();
int similarity = node.getSimilarity();
int doc2 = node.getDoc2();

if (similarity < closest[doc1]){
dsdList[doc1] = doc2;
closest[doc1] = similarity;

}
if (similarity < closest[doc2]){

dsdList[doc2] = node.getDoc1();
closest[doc2] = similarity;

}
}
return dsdList;

}

public static void main(String[] args) throws Exception {
// generate the dictionary
String[] dict = CourseworkUtilities.generateDictionary(100, 5);
int numberOfDocs = 10000; // number of documents in the doc list.
int lengthOfDocs = 1000; // number of words in a document.
String[][] docList = new String[numberOfDocs][lengthOfDocs];

// generate the list of documents.
for (int i = 0; i < numberOfDocs; i++) {

docList[i] = CourseworkUtilities.generateDocument
(dict, lengthOfDocs);

}

int[] dsdList = findNearestDocuments(docList, dict);
}

}

9 Find Nearest Documents - Timing Experiments

As we found in section 7, the part of our algorithm we called findFeatureVectors was determined
to have the longer runtime on the majority of sets, so I will ensure that for all tests the amount
of documents to be compared does not exceed the length of each document and only that section
of the algorithm is timed. For this series of testing, there are four variables we can change: w,
the length of each word in Dictionary Q and Document D, n (or l), the length of Dictionary
Q, o, the length of Document D, and f , the count of Document D in List E. As o, l and f
are the elements of the algorithm that directly affect timing, I would focus on varying these,
however using more than two variables would make testing difficult therefore I choose to set o
to a constant value for these experiments. I will set w to 5, as before, and o will be kept at
1,000 to keep processing times low. I will perform measurements on combinations of 10, 100
and 1000 for the value of l, and the same for f , with the lower values for l being tested at values
10,000 and 100,000 for f . For each combination, I will perform 100 tests in a for-loop to ensure

13

we have a good estimate of the time taken. Figure 3 tracks the relationship between the set
of operations being performed and their compute time, with Figure 4 showing the relationship
between a set of operations being performed, at the time it takes for roughly one operation in
that set to execute.

As expected for Figure 3, this time around the graph increases almost directly linearly with
the increasing numbers of operations. Towards the lower end of the graph the operations do
seem to take a fraction longer to compute across the entire set, but in general, increasing the
number of operations by log base ten increases the time taken to compute tenfold. Most notably,
however, is that there is a clear trend between the compute time taken and the length of the
Dictionary, with larger dictionaries taking less time to compute overall. This is counter to the
previous tests where changing the size of the Dictionary had no overall effect on the time taken
to compute the algorithm, but obvious when thought about. Since having a shorter Dictionary
would mean there are more documents needed in the list to equal the number of fundamental
operations performed here (since one million operations could be a Dictionary of length 10 on
a Document of length 1000 on a list of Documents of length 100, or a Dictionary of length 100
on a Document of length 1000 on a list of Documents of length 10). These results clearly show
that performing operations on a larger number of documents with a shorter dictionary is more
computationally expensive than the inverse, despite what I would assume from my analysis of
the algorithm, which stated that 10× 1000× 100 = 100× 1000× 10. I can only assume that the
extra time in this case is due to writing a greater number of values to the array featureVectors,
which would be an element that would be lost as a constant in algorithmic analysis.

When plotting the operations performed against the average time one operation takes, we can
clearly see two trends in Figure 4 that, after seeing Figures 2 and 3, should now be expected.
Firstly, like in Figure 2, the time for the average operation to be performed continues to decrease
as the number of operations performed increases. The curve isn’t quite as pronounced on
Figure 4 compared to Figure 2, however Figure 4 is shifted a factor of ten up the scale, which
would appear to account for the difference. The time per operation is also clearly larger this
time around, however that is likely due to more processing having to occur this time, as each
fundamental operation computes the feature vector, adds it to an array and iterates through
a list of Documents, requiring much more data to be loaded from RAM and processed in one
million operations compared to the operations in Figure 2. Secondly, it’s clear that as we found
with Figure 3, the larger the List of Documents (and the smaller the Dictionary), the longer
those operations take compared to their inverse in the same set. This is not surprising as we
previously discovered this from looking at Figure 3, and the intent of Figure 4 was not to bring
any further attention to this.

14

Figure 3: Comparisons performed plotted against time taken to compute a set of feature vectors.

Figure 4: Comparisons performed on all documents in the list plotted against time taken per
comparison.

15

