
Standard Coding Sheet Student Number: 100225776 

 
Question 1a:  
Shift a number stored in a0 five places to the right and store the result in b0. 
 

Register 0 1 2 3 4 5 6 7 
Purpose  Number 

to Shift 
Mask 
0000011
1 (07) 

Result of 
Shift 

    

 
00 
02 
04 
06 
08 
0a 

11a0 
2207 
a105 
8312 
33b0 
c000 

Load Register 1 with the value at address a0, the number to be shifted 
Load Register 2 with bit pattern 07 (0000 0111), the AND mask 
Rotate the value in Register 1 five places to the right 
AND the rotated result with the mask in Register 2, store in Register 3 
Store the result from the masking at address b0 
Halt execution 

 
 

Question 1b:  
Swap the 1st 4 bits of a value in a0 with the last 4 bits, store the result in b0. 
There doesn’t need to be any information stored in registers for this since it is 
essentially rotating the number 4 bits around and saving it.  
 

Register 0 1 2 3 4 5 6 7 
Purpose  Number 

to Shift 
      

 
00 
02 
04 
06 

11a0 
a104 
31b0 
c000 

Load Register 1 with the value at address a0, the number to be rotated 
Rotate the value in Register 1 four places to the right 
Store the shifted number to address b0 
Halt execution 

 

 

  



Question 1c:  
Given two values, one at a0 and one at a1 determine if the last 4 bits are the 
same. If they are store 01 at address b0, if different store 00 at b0. 
 

Register 0 1 2 3 4 5 6 7 
Purpose Second 

number 
to 
compare 

First 
number 
to AND/ 
compare 

Second 
number 
to AND 

AND 
mask 
(0F) 

Value 00 
(if bits 
don’t 
match) 

Value 01 
(if bits 
do 
match) 

  

 
00 
02 
04 
06 
08 
0a 
0c 
0e 
10 
12 
14 
16 

11a0 
12a1 
2307 
2400 
2501 
8113 
8023 
b114 
34b0 
c000 
35b0 
C000 

Load Register 1 with the value at address a0, the first number 
Load Register 2 with the value at address a1, the second number 
Load Register 3 with bit pattern 0F (0000 1111), the AND mask 
Load Register 4 with bit pattern 00, the first number for storage  
Load Register 5 with bit pattern 01, the second number for storage 
AND Register 1 and 3 to clear first 4 bits from Register 1 value, store in Reg1 
AND Register 2 and 3 to clear first 4 bits from Register 2 value, store in Reg0 
Jump to instruction 14 if the output from the last instruction matches reg1 
Store value in Register 4 (00) at address b0, as the numbers don’t match 
Halt execution 
Store value in Register 5 (01) at address b0, since numbers match 
Halt execution 

 
 

Question 2a:  
Multiply a number in a0 in the range 0 – 8 by 8 and store the result in b0.  
Since we know the number to multiply with will always be 10002, we don’t 
need to store or reference it, saving RAM, registers and cycles. The first three 
bits are 0 so we essentially ignore them and rotate the number left by three. 
Since the value in a0 is only using 4 bits we don’t need to worry about the last 
four bits flowing back around so we can just store the result of the shift. 
 

Register 0 1 2 3 4 5 6 7 
Purpose  Value to 

multiply 
      

 
00 
02 
04 
06 

11a0 
a105 
31b0 
c000 

Load Register 1 with the value at address a0 (value must be 00hex to 08hex) 
Shift Register 1 three places left (five to the right) 
Store the shifted number to address b0 
Halt execution 

 

  



Question 2b:  
Sort two numbers in a0 and a1 in descending order and store the result in a0 
and a1. I take the first number away from the second and work out if the 
number is negative, if it is than it means the first number was larger and should 
be rotated with the second, the values are then stored. The downside of this is 
that both numbers are treated as signed integers therefore values over 7Fhex 
(12710) are treated as negative decimal numbers and will be sorted accordingly. 
 

Register 0 1 2 3 4 5 6 7 
Purpose Bit 

pattern 
80 

First 
number 
to 
compare 

Second 
number 
to 
compare 

Result Bit 
pattern 
01 

Register 
for 
swapping 
values 

XOR 
mask ff 
– 2s 
comp 

 

 
00 
02 
04 
06 
08 
0a 
0c 
0e 
10 
12 
14 
16 
18 
1a 
1c 
1e 

2080 
11a0 
12a1 
2401 
26ff 
9316 
5343 
5323 
8303 
b31e 
4025 
4012 
4051 
31a0 
32a1 
c000 

Load Register 0 with the bit pattern 80 for negative test 
Load Register 1 with the value at address a0, the first number 
Load Register 2 with the value at address a1, the second number 
Load Register 4 with the value 01 for adding in 2s complement 
Load Register 6 with bit pattern ff (1111 1111) for XOR mask 
XOR Register 1 with ff to find 2s complement, store in Register 3 
Add one to Register 3 to complete 2s complement 
Add Register 2 and 2s complement in Register 2, overwrite Register 3 
AND Register 0 with the result to see if the number is negative 
Jump to end if the result is negative (as numbers started in correct places) 
Move the second number to temp register 
Move the first number to second number’s register 
Move the second number over into the first number’s register 
Store the highest value to address a0 
Store the lowest value to address a1 
Halt execution 

 
  



Question 2c:  
Reverse the order of bits in a byte stored in a0. Store the results in b0. I made 
this one more efficient by using Register 0 to both hold the value 01 for the 
AND mask as well as be the value that would increase the counter and the 
value that the counter was counting towards. This does require that the 
counter overflow from ff to 00 however, which I accept might not be suitable 
for all instruction sets.  
 
I believe I have found a bug in the Brookshear Machine through testing my code with this question. 
All numbers that I have been able to test produce the correct answer except the value 01, which 
gives 00 as an answer rather than 80. It seems that when the machine runs the 8th iteration of the 
below loop of code and executes instruction 5545 it should do nothing to the contents of register 5, 
as register 4 holds the value 0, however it instead it causes register 5 to reset from 80hex to 00 before 
continuing correctly. From what I understand on the topic I believe my code as shown below should 
otherwise perform correctly and the fault lies within the program, so I have chosen not to write in 
lines to address this single use-case. 
 

Register 0 1 2 3 4 5 6 7 
Purpose AND 

mask / 
count 01 

Number 
to 
reverse 

Counter  Current 
bit 

Running 
total 

  

 
00 
02 
04 
06 
08 
0a 
0c 
0e 
10 
12 
14 
16 
18 

2001 
11a0 
22f9 
2500 
8401 
5545 
5202 
b216 
a101 
a507 
b008 
35b0 
c000 

Load Register 0 with the bit pattern 01 AND mask / counter (as above) 
Load Register 1 with the value at address a0 
Load Register 2 with bit pattern f9 for a rotation counter 
Load Register 5 with bit pattern 00 to initialise running total 
AND given value with 01 mask to keep significant digit, store in register 4 
Add the value in Register 4 to the running total 
Add Register 0 (01) to counter to increase it 
Jump to end of program if counter reaches 01 
Rotate Register 1 one place to right  
Rotate Register 5 one place to the left (right 7) 
Jump back to start of loop if counter is not 0 
Store the running total to address b0 
Halt execution 

 
  



Question 3:  
Sort 3 numbers stored in a0, a1 and a2 into descending order and store the 
result in a0, a1 and a2. We will test the first two numbers first to see if they’re 
in order, and if not swap them, then check the second and third numbers and 
swap them if they are not in order. Finally, we go back to the first two numbers 
to ensure they are in the correct order before storing the results. 
 

Register 0 1 2 3 4 5 6 7 
Purpose Bit 

pattern 
80 

First 
number 
to 
compare 

Second 
number 
to 
compare 

Third 
number 
to 
compare 

Compari
son 
Result 

Bit 
pattern 
01 

XOR 
mask ff 
– 2s 
comp 

Register 
for 
swapping 
values 

Register 8 
Purpose Final 

loop 
‘flag’ bit 

 
00 
02 
04 
06 
08 
0a 
0c 
0e 
10 
12 
14 
16 
18 
1a 
1c 
1e 
20 
22 
24 
26 
28 
2a 
2c 
2e 
30 
32 
34 
36 
38 
3a 

2080 
11a0 
12a1 
13a2 
2501 
26ff 
2801 
9416 
5454 
5424 
8404 
B41e 
4027 
4012 
4071 
b834 
4008 
9426 
5454 
5434 
8404 
b434 
4037 
4023 
4072 
b00e 
31b0 
32b1 
33b2 
c000 

Load Register 0 with the bit pattern 80 for negative / counter check 
Load Register 1 with the value at address a0 
Load Register 2 with the value at address a1 
Load Register 3 with the value at address a2 
Load Register 5 with the value 01 for adding in 2s complement 
Load Register 6 with bit pattern ff (1111 1111) for XOR mask 
Load Register 8 with bit pattern 01 as a flag for looping the program 
XOR Register 1 with ff to find 2s complement, store in Register 4 
Add one to Register 4 to complete 2s complement 
Add Register 2 and 2s complement in Register 4, overwrite Register 4 
AND Register 0 with the result to see if the number is negative 
Jump past moving numbers if the result is negative (first number is larger) 
Move the second number to temp register 
Move the first number to second number’s register 
Move the second number from temp over into the first number’s register 
Jump to the end of the program if the final loop flag is set to 80hex  
Move 80 from Register 0 to Register 8 to set the loop flag 
XOR Register 2 with ff to find 2s complement, store in Register 4 
Add one to Register 4 to complete 2s complement 
Add Register 3 and 2s complement in Register 4, overwrite Register 4 
AND Register 0 with the result to see if the number is negative 
Jump to end if the result is negative (first number is larger) 
Move the third number to temp register 
Move the second number to third number’s register 
Move the third number over from temp into the second number’s register 
Jump back to the first comparison to ensure they’re in the correct order 
Store the highest value to address a0 
Store the middle value to address a1 
Store the lowest value to address a2 
Halt execution 

 



Question 4: 
Place the value ff in 10 memory matrix cells, one below the other, starting in 
cell 27. Only two STORE instructions (instruction 3) should be used. Since the 
active cell is being increased at the same amount each time, I decided to 
simply have register 0 hold the value for the cell after the last one I want to 
save to.  

 
Register 0 1 2 3 4 5 6 7 
Purpose Counter 

check 
(c7) 

Value to 
store (ff) 

Counter / 
current 
address 

Bit 
pattern 
10 

    

 
00 
02 
04 
06 
08 
0a 
0c 
0e 
10 
12 

20c7 
21ff 
2227 
2310 
3127 
5232 
b212 
3209 
b008 
c000 

Load Register 0 with bit pattern c7 for checking counter 
Load Register 1 with bit pattern ff, as value to be stored 
Load Register 2 with bit pattern 27 for current cell address / counter 
Load Register 3 with bit pattern 10 for increasing cell address / counter 
Store the value ff in the currently active cell 
Add 10 to the address of the currently active cell / counter 
Jump to the end if the current value of the counter is c7 
Store the value of the current cell in the program to modify the save location 
Jump back to the start of the loop 
Halt execution 

 
Question 5: 
Add 13 numbers in adjacent memory matrix cells 28 to e8 (downwards again) 
and store the result in f8. This should be done in a maximum of 14 lines of 
code (can be done in fewer). Here I used the location of the active cell as the 
counter to save some lines of code. 
 

Register 0 1 2 3 4 5 6 7 
Purpose Bit 

pattern 
f8 

 Counter 
/ cell 
address 

Bit 
pattern 
10 

 Running 
total 

Current 
number 

 

 
00 
02 
04 
06 
08 
0a 
0c 
0e 
10 
12 
14 
16 

20f8 
2228 
2310 
2500 
1628 
5565 
5232 
B214 
3209 
b008 
35f8 
c000 

Load Register 0 with bit pattern f8 for checking counter 
Load Register 2 with bit pattern 28 for current cell address 
Load Register 3 with bit pattern 10 for increasing cell address / counter 
Load Register 5 with bit pattern 00 for running total 
Load Register 6 with the value at the current active cell 
Add current number to running total 
Add 10 to the counter / cell address 
Jump to the end if the current value of the counter is e8 
Store the value for the current location into the program to modify it 
Jump back to the start of the loop 
Store the total at address f8 
Halt execution 

 



Brookshear Machine Instruction Set 

 

Op-
code 

Operan
d 

Description Example 

1 RXY LOAD the register R with the bit 
pattern found in the memory cell 
whose address is XY. 

14A3 would cause the contents of the 
memory cell located at address A3 to be 
placed in register 4. 

2 RXY LOAD the register R with the bit 
pattern XY. 

20A3 would cause the value A3 to be placed 
in register 0 

3 RXY STORE the bit pattern found in 
register R in the memory cell whose 
address is XY. 

35B1 would cause the contents of register 5 
to be placed in the memory cell whose 
address is B1. 

4 ORS MOVE the bit pattern found in 
register R to register S. 

40A4 would cause the contents of register A 
to be copied into register 4 

5 RST ADD the bit patterns in registers S 
and T as though they were two’s 
complement representations and 
leave the result in register R. 

5726 would cause the binary values in 
registers 2 and 6 to be added and the sum 
placed in register 7. 

6 RST ADD the bit patterns in registers S 
and T as though they represented 
values in floating-point notation and 
leave the floating-point result in 
register R 

634E would cause the values in registers 4 
and E to be added as floating-point values 
and the result to be placed in register 3. 

7 RST OR the bit patterns in registers S and 
T and place the result in register R 

7CB4 would cause the result of ORing the 
contents of registers B and 4 to be placed in 
register C 

8 RST AND the bit patterns in registers S 
and T and place the result in register 
R. 

8045 would cause the result of ANDing the 
contents of registers 4 and 5 to be placed in 
register 0. 

9 RST EXCLUSIVE OR the bit patterns in 
registers S and T and place the 

result in register R. 

95F3 would cause the result of EXCLUSIVE 
ORing the contents of registers F and 3 to 
be placed in register 5. 



A RoX ROTATE the bit pattern in register R 
one bit to the right X times. 

Each time place the bit that started 
at the low-order end at the high-
order end. 

A403 would cause the contents of register 4 
to be rotated 3 bits to the right in a circular 
fashion. 

B RXY JUMP to the instruction located in 
the memory cell at address XY if the 
bit pattern in register R is equal to 
the bit pattern in register number 0. 
Otherwise, continue with the normal 
sequence of execution. (The jump is 
implemented by copying XY into the 
program counter during the execute 
phase.) 

B43C would first compare the contents of 
register 4 with the contents of register 0. If 
the two were equal, the pattern 3C would 
be placed in the program counter so that 
the next instruction executed would be the 
one located at that memory address. 
Otherwise, nothing would be done and 
program execution would continue in its 
normal sequence. 

C 000 HALT execution. C000 would cause program execution to 
stop. 

 

16 registers labelled 0 – F. Each hold 8 bits. 

256 memory locations labelled 0 – FF. Each hold 8 bits. 

All programs start at memory address 00. 

All data starts at memory address a0. 


	Machine Code Programming
	Instruction Set

