

1

CMP-5012B

SOFTWARE ENGINEERING
GROUP PROJECT STAGE 2

Group 25

Event Booking System

Group members:

Martin Siddons – 100225776
Chris Sutton – 006214363

Lena Almatrodi – 100255110
Aurelie Sing Fat – 100249917

Date: 09 June 2020

2

Table of Contents
1. Stage 1 Feedback Address (S2.1 in mark sheet) ... 4

1.1. Table of Contents for Feedback ... 4

1.2. Revised Feature Matrix .. 7

1.3. Revised Textual Use Case ... 9

1.4. Revised Natural Language Modelling .. 11

1.4.1. Events Coordinator (EC) .. 11

1.4.2. Agent ... 13

1.4.3. Customer ... 14

2. Stage 2 Additional Requirements and Updates (S2.2. in mark sheet) .. 15

2.1. Revised MoSCoW ... 15

2.2. Functional requirements .. 16

2.2.1. Complex Event Handling ... 16

2.3. Non-functional requirements .. 17

2.3.1. Encryption System .. 17

2.3.2. UI Redesign ... 18

2.4. Object Oriented Analysis (OOA) ... 19

2.5. Object Oriented Design (OOD) ... 19

2.5.1. Model class diagram (final iteration) .. 19

2.5.2. MVP diagram (final iteration) ... 21

2.6. Implementation ... 22

2.6.1. Details ... 22

2.6.2. Front end (UI/View) state diagram (final iteration) .. 22

2.6.3. Front end design (final iteration) .. 23

2.6.4. Sequence diagrams (final iteration) .. 23

2.6.5. Application specific code .. 24

2.6.6. Testing ... 24

2.6.6.1. Unit tests (dynamic white box) .. 24

2.6.6.2. User test (dynamic black box) .. 24

4. References .. 26

5. Glossary ... 27

APPENDIX .. 28

A1. Application Screenshots to show UI changes ... 28

A2. Event View as Agent ... 34

A3. Folder Organisation .. 35

A4. White Box Testing Code .. 36

3

A4.1. DatabaseManager Test Setup.. 36

A4.2. DatabaseManager unit tests ... 36

A4.3. DatabaseManager Test Cleanup .. 40

A4.4. User Test Setup .. 40

A4.5. User Unit Tests ... 41

A4.6. User Test Clean-up ... 41

A5. Code Snippets ... 42

A5.1. DatabaseManager.java : deleteBooking() ... 42

A5.2. DatabaseManager.java : deleteEvent() ... 42

A5.3. BookingViewPresenter : verifySecretWord() ... 43

A5.4. BookingViewPresenter : SaveBookingButtonPressed() snippet .. 44

4

1. Stage 1 Feedback Address (S2.1 in mark sheet)

1.1. Table of Contents for Feedback
Feedback

label Feedback statement Feedback address Update (with
hyperlinks)

 F1.1 You should add your own
system to the feature
matrix for the next Stage 2
so you can see how it
compares to the five
similar systems.

Feedback noted, feature
matrix has now been
updated with our system.

1.2. Revised Feature
Matrix

F2.1 It is better to use a table
style format for use cases
with success scenarios
(rather than ‘happy path’)
with clearly numbered
steps and alternative
scenarios (instead of
‘unhappy path’) also with
corresponding numbered
steps that relate to the
success scenario.

Table style format for the
use cases has now been
added to this report.

1.3. Revised Textual Use
Case

F2.2 Please put Personas in an
appendix if there are
many!

Feedback noted, however
there are no further
personas to add to this
report.

N/A

F3.2 Although the analysis from
use cases is thorough, the
NLM approach is not
clearly illustrated. Using
for example coloured text
to emphasise re-occurring
entities which are then
classified as potential
classes, attributes and
relationships is a clearer
way of illustrating how
these are derived and
captured as OOA model in
3.2 (Initial class diagram).

NLM approach is updated
and all classes, attributes,
and relationships have
been color-coded in this
report.

1.4. Revised Natural
Language Modelling

5

F4.1 Event uses an array of
Booking(s) which are
passed via a mutator. This
is not a composite
relationship as Event is not
instantiating any
Booking(s). The
relationship is aggregate
instead (white diamond).
The same in the
addBooking method
where the booking
b is passed as a
parameter.

This has been understood
and amended on
diagrams, along with
adding the new class and
methods.

Error! Reference source
not found.

2.5.2. MVP diagram (final
iteration)

F5.1 The buttons at the bottom
right of various windows
that constitute actions
(e.g. Save, Add, etc.) are
too small and using italic
text for such buttons is not
a good idea. They should
be larger than all the rest
and preferably have larger
or boldface fonts so they
are clearly visible
(Currently they are not).

Feedback noted, all
buttons constituting
actions have been
changed and added to this
report. In addition, many
other fields have had their
fonts increased or
elements repositioned to
look clearer on modern
monitors.

2.3.2. UI Redesign

Appendix: A1. Application
Screenshots to show UI
changes

F5.2 Make sure that if someone
has no write rights that
they cannot alter the
information even if this
has no effect in the
database. Reason is that
once they removed
information they’ll have to
go out and re-enter if the
information was
important. As such the
text fields should be
frozen.

A check is now performed
when the Event view is
loaded so that if the
currently logged in
account is not an Event
Coordinator, the fields will
show as labels instead.

Appendix: A2. Event View
as Agent

Also shown in
Presentation.

F5.3 Make sure that entered
passwords are masked.

Masks are now applied to
appropriate fields.

Appendix A1: Figure 1

F5.4 Use password hashes
(encryption) when
passwords are transmitted
to the database.

Encryption class has been
created for generating
password salt and hashes.
Various changes have
been made to the model
and presenter to deal with
the addition of encryption.

2.3.1. Encryption System

F5.5 Put each of M, V and P in a
separate folder for clarity.

Feedback noted. Each of
M, V and P are now in
separate folders.

Appendix: A3. Folder
Organisation

6

F5.6 Enhance the ‘Create New
Event’ feature to handle
an event with a complex
schedule. For example, an
event is scheduled 7pm on
Monday, 6pm on Tuesday,
3pm on Wednesday, etc. :
can you handle such
schedule?

Although progress was
made in designing this
feature, implementation
proved too difficult in the
time remaining and so the
feature was ultimately not
integrated into the
project.

2.2.1. Complex Event
Handling

F5.7 No testing reported. Dynamic White box
testing implemented from
the start of phase two and
expanded on throughout
development.

2.6.6. Testing

Appendix: A4. White Box
Testing

Also featured in
presentation.

F6.1 Put screenshots in
appendix.

Agreed, all relevant
screenshots of the
application can now be
found in the appendix

Appendix (multiple
sections).

F7.1 Do not overuse fade-out
and fade-in and if you
consider to use them,
make sure they are timed
correctly. Currently it feels
like I missing out on
information due to fade-
outs happening too soon.

Noted, presentation was
edited differently to
accommodate this.

Shown in Presentation.

F7.2 No unit test demo-ed as
requested in guidelines
document.

Added unit tests to
program and shown them
in presentation.

2.6.6. Testing

Appendix: A4. White Box
Testing

Also featured in
Presentation.

Table 1. Stage 1 feedback address.

7

1.2. Revised Feature Matrix
Feature WeezEvent TicketSource Eventbrite RSVPify BookingLive Our System (EBS)
Create / Define Venue ✓ ✓ ✓ ✓ ✓ ✓
Create Event at venue ✓ ✓ ✓ ✓ ✓ ✓
Pick date and time for event ✓ ✓ ✓ ✓ ✓ ✓
Ability to add different ticket types for different seats/
areas

✓ ✓ ✓ ✓ ✓ (as upsell) ✓

Ability to add different tickets for different ages X X ✓ ✓ ✓ ✓
Ability to add a visual for the event ✓ X ✓ ✓ ✓ X
Can add YouTube video to event X X ✓ X ✓ X
Ability to see revenue taken from tickets so far ✓ X ✓ ✓ ✓ ✓
Allows widget integration into eXisting site ✓ ✓ ✓ ✓ (when not

taking
payment)

✓ (iframe) X

Allows sales / advertising via Facebook integration ✓ ✓ ✓ ✓ X X
Gives subsite / minisite to advertise and allow
bookings

✓ X ✓ ✓ ✓ X

Ability to customise the design of the ticket ✓ X X ✓ X X
Generate and print tickets for physical sale ✓ ✓ X X X X
System holds account details of attendees ✓ ✓ ✓ ✓ ✓ ✓
System sends confirmation to users when ticket is
booked

✓ ✓
(mailchimp)

✓ ✓ ✓ ✓

Email to event organiser when ticket booked / quota
reached / sold out

✓ ? ? ? ? X

Allows creation of discount codes ✓ X X ✓ X X
Send invites by email ✓ X ✓ ✓ X X
Allows reports to be made ✓ ✓ ✓ ✓ ✓ ✓
Integration with Stripe / Paypal X ✓ (Stripe) ✓ (Paypal) ✓ (Stripe) ✓ (Stripe) X
Allows payment with Debit / Credit Card ✓ ✓ ✓ ✓ ✓ X
Configurable booking fee ✓ ✓ ✓ ✓ X X

8

Allows booking co-ordinator (BCO) to see attendees ✓ ✓ ✓ ✓ ✓ ✓
Allows BCO to view graphs on event attendance etc. ✓ ✓ ✓ ✓ X (table only) ✓
Allows BCO to add attendees to system ? ? ✓ ✓ ✓ ✓
Provides on-the-door ticket validation X ✓ X ✓ (QR) X X
Seating plan management X ✓ X ✓ X X
Togglable ability to allow customers make donation to
charity

X ✓ ✓ ✓ X (could be
added as
upsell)

X

Ability to check details are correct before publication ✓ X ✓ ✓ ✓ ✓
Can set a maximum number of tickets to sell ✓ ✓ ✓ ✓ ✓ ✓
Allows additional costs to be added to ticket
(food/drink)

X ✓ ✓ ✓ ✓ ✓

Ability to set a time and date to stop selling tickets X ✓ ✓ X ✓ X
Booking interface for customers to book their own
tickets

✓ X ✓ ✓ ✓ X

Links event venue to Google Maps location X X ✓ X X X
Event designer system for minisite X X ✓ X X X
Can limit the number of ticket sales per transaction X (default

only)
X (default
limit)

✓ X X (10 by
default)

X

Can set different entry times per ticket X X ✓ X X X
Minisite traffic analytics X X ✓ X ✓ X
Allows a set refund policy X X ✓ X X X
Can set up surveys to go out to attendees X X ✓ X X X
Customisable URL for minisite X X X ✓ X X
Specific settings for dinner can be toggled on X X X ✓ X X
Ability to ask guests custom questions (hotel, travel
plans)

X X X ✓ X X

Ability to send a .ics calendar invite to attendees X X X ✓ X X

9

1.3. Revised Textual Use Case

Title: Agent makes a new booking.

Summary: Customer contacts Agent with inquiry about an event. Agent takes Customer details and
saves them to the database. Agent then makes a booking with the requested details.

Actors: Customer, Agent

Stakeholders: Customer, Agent, Events Coordinator

Preconditions: Event Coordinator and Agent have accounts in the database. Event Coordinator has
created a valid event. Agent has logged into the system.

Triggers: Agent receives a phone call/in-person request from the customer.

Version: 2.0

Main Success Scenarios:

Actions of Actors Actions of System
1. Customer inquiries about making a booking

on a certain event

2. Agent navigates to event list page.
3. Agent double clicks on the requested event. 4. The system presents the event details

screen.
5. Agent navigates to bookings tab.
6. Agent clicks on ‘Make new Booking’ button. 7. The system presents the new booking

screen.
8. Agent requests customer username,

password, and address.

9. Customer provides details.
10. Agent enters details into text fields and

clicks ‘Add new Customer’ button.
11. System saves new customer to database.

12. Agent selects new customer.
13. Agent types in requested number of tickets

of the requested type.

14. Agent types in requested number of
sundries of the requested type.

15. Agent clicks on ‘Save Booking’ button. 16. System presents a success message.
 17. System saves new booking to database.
 18. System generates confirmation email and

sends it to customer.

10

Alternative Scenarios:

A1. Event not located in database.
A1 scenario starts at point 3 of the Main Success Scenario.

Action of Actors Action of System
3. Agent double clicks on the requested event. 4. Agent double clicks on the requested event.
 5. Error message presented.
 6. Failure logged.

A2. Incorrect Booking page for ‘New Booking’.
A2 scenario starts at point 6 of the Main Success Scenario.

Action of Actors Action of System
6. Agent clicks on ‘Make new Booking’ button. 7. System fails to correctly present empty

booking page template.
 8. Error message presented.
 9. Failure logged.

A3. Unable to save new customer to database.
A3 scenario starts at point 10 of the Main Success Scenario.

Action of Actors Action of System
10. Agent enters details into text fields and
clicks ‘Add new Customer’ button.

11. System fails to save new customer to
database.

 12. Error message presented.
 13. Failure logged.

A4. Error in saving new booking.
A4 scenario starts at point 15 of the Main Success Scenario.

Action of Actors Action of System
15.Agent clicks on ‘Save Booking’ button. 16. System fails to save new booking to

database.
 17. Error message presented.
 18.Failure logged.

A5. No confirmation email sent to customer.
A5 scenario starts at point 17 of the Main Success Scenario.

Action of Actors Action of System
 17. System saves new booking to database.
 18.System fails to generate confirmation email

and send it to customer.
19. Error message presented.

 20.Failure logged.

11

1.4. Revised Natural Language Modelling

1.4.1. Events Coordinator (EC)
Log into the system:

1. The Events Coordinator types their details into the account login screen
2. The system processes their login
3. The system returns the Events Coordinator ‘dashboard’ upon successful login

Add new event:

1. From the ‘dashboard’, the Events Coordinator clicks on ‘Add new event’ button.
2. The system presents the new event screen, providing options for adding start time/end

time, date, ticket types, prices and sundries.
3. The Events Coordinator enters event details and clicks on ‘Publish event’.

Design ticket:

1. From the ‘dashboard’, the Events Coordinator clicks on ‘Edit event’ button.
2. The system presents the event edit screen.
3. The Events Coordinator clicks on ‘Upload ticket design’ button.
4. The system allows them to select an image file from their computer, and uploads the image,

attaching it to the ticket.
5. The Events Coordinator clicks on ‘Apply’.

View revenue:

1. From the ‘dashboard’, the Events Coordinator navigates to the events list screen.
2. The system presents each event’s total revenue (a function of ticket sales).

Notify customers of event changes:

1. From the ‘dashboard’, the Events Coordinator navigates to the events list screen.
2. The Events Coordinator clicks on the event they wish to edit.
3. The system presents the edit event screen.
4. The Events Coordinator makes any edits they wish.
5. The system generates an email to notify any customers who have tickets to that event.
6. The system sends the emails.

Create discount codes:

1. From the ‘dashboard’, the Events Coordinator navigates to the events list screen.
2. The Events Coordinator clicks on the event they wish to create a discount code for.
3. The system presents the edit event screen.
4. The Events Coordinator types the required discount code in the ‘Discount code’ field and

chooses how much (in percent) a customer will save.
5. The Events Coordinator clicks on ‘Apply’.

12

Generate reports:

1. From the ‘dashboard’, the Events Coordinator navigates to the Reports page.
2. The Events Coordinator selects the scope of the report from several drop-down boxes and

clicks ‘Generate’.
3. The system generates the report according to the specified scope and presents it as a PDF.

Customise the look and feel of the customer-facing pages:

1. From the ‘Edit Event’ screen Events Coordinator clicks ‘Customise look’
2. The Events Coordinator specifies an image and colour scheme for the corresponding event.
3. The Events Coordinator clicks ‘Accept’, system changes the image and colour scheme for the

corresponding ticket sales page.

Add sundry items to an existing event:

1. From the ‘Edit Event’ screen, the Events Coordinator clicks the ‘Add new items’ button from
the Sundry Items section

2. The Events Coordinator adds the details of the new items including name, description and
price and sales limit

3. The Events Coordinator clicks accept, system adds tax and additional (pre-set) fees to price
and adds it to the event.

Add different types of ticket to an existing event:

1. From the ‘Edit Event’ screen, the Events Coordinator clicks the ‘Add new ticket’ button in the
tickets box of the system

2. The Events Coordinator enters the new ticket details including name, price, ticket sales limit
3. The Events Coordinator confirms details and the system adds the ticket to the event for sale

and updates the maximum number of tickets to be sold to include the new tickets

Change the maximum number of tickets to be sold:

1. From the ‘Edit Event’ screen, the Events Coordinator clicks the ‘Total Max tickets’ field and
enters the limit number, which cannot be lower than the amount of tickets sold so far

2. System changes the maximum number of tickets for sale and tickets remaining based off of
this number

To generate and print tickets from the system:

1. From ‘Dashboard’, the Events Coordinator clicks the events button
2. The Events Coordinator finds and selects the event they wish to print tickets from
3. The Events Coordinator clicks the ‘print tickets’ button
4. The Events Coordinator enters how many tickets to print – system limits to remaining tickets

available
5. System builds and sends request to specified printer
6. System deducts number of printed tickets from remaining ticket count

13

1.4.2. Agent
Log into the system:

1. The agent types their details into the account login screen
2. The system processes their login
3. The system returns the agent ‘dashboard’ upon successful login

Make a booking:

1. Customer calls agent to make a booking or for enquiry.
2. From the ‘dashboard’, the agent accesses details of event.
3. System shows event description start time/end time, date, ticket types, prices and sundries

available.
4. Agent asks for customer details.
5. Agent makes a booking on the event.
6. System records customer details for the booking.
7. Agent asks customer for payment details.
8. System processes payment.
9. System generates receipt and emails ticket to customer.

Edit a booking:

1. From the ‘dashboard’, agent accesses the customer panel to view details of customer’s
booking.

2. Agent makes changes to customer’s booking.
3. System records the changes made.
4. System processes additional payment if required.
5. System generates new receipt and emails edited ticket to customer.

Send emails to advertise an event:

1. From the ‘dashboard’, Agent clicks ‘Events’ button, system displays list of events.
2. Agent selects the event they wish to email about to view event’s details.
3. System displays event information page.
4. Agent clicks ‘advertise event’ button.
5. The system accesses the list of previous customers that are happy to be emailed
6. System sends emails to advertise upcoming event.

14

1.4.3. Customer
View customer’s information in the system:

1. The customer phones the box office to speak to an agent
2. From the agent ‘dashboard’, the agent clicks the ‘find customer’ button and requests the

customers’ name and postcode
3. The agent enters the above details into the search box on the ‘find customer’ screen
4. The system displays the customer’s account information including full name, address, email

and purchase history on the ‘customer details’ screen

Create a new account:

1. The customer phones the box office to speak to an agent
2. From the agent ‘dashboard’, the agent clicks the ‘Add new user’ button, the system displays

the corresponding page
3. The agent asks the customer for their details including name, address and email for contact
4. The agent confirms with the customer that they are happy to receive emails from them
5. The agent confirms the above fields, the system adds a record for the new customer

Make a booking:

1. From the agent ‘customer details’ screen, the agent clicks the ‘new booking’ button
2. The customer confirms which event they would like to make a booking, the agent clicks the

booking as listed on the given screen
3. The customer gives the number of tickets and any extras they would like to order
4. The agent checks the tickets are bookable, confirms the customer’s request and submits the

details to the system
5. The system creates a new booking for that customer on the selected event and removes the

number of tickets sold from the total available
6. The system generates a ticket and receipt which is emailed to the customer

View a previous booking:

1. From the agent ‘customer details’ screen, the agent finds the booking the customer has
requested and clicks it

2. The agent relays the requested information to the customer

View the frequently asked questions (FAQs):

1. The customer phones the box office to speak to an agent
2. The customer relays the question to the agent
3. The agent gives the customer the answer to their question

15

2. Stage 2 Additional Requirements and Updates (S2.2. in mark sheet)
2.1. Revised MoSCoW

Feature Status Added
Must Have

Ability for EC to create, edit, and delete an event. Specification met Stage 1
System to notify customers by email when a booking has been
made.

Specification met Stage 1

Agent must have ability to make, edit and delete bookings for
customers.

Specification met Stage 1

Should Have
Ability for EC and Agent to view all events and see them in
detail.

Specification met Stage 1

Ability for EC to view how much total revenue has been
generated by bookings.

Specification met Stage 1

Ability for EC to view how much revenue has been generated
per event.

Specification met Stage 1

Ability for EC to generate reports of various criteria and print
them in PDF form.

Specification not met Stage 1

Ability for EC to add sundry items to an event which can be
added to a booking.

Specification met Stage 1

Ability for EC to specify several different types of ticket for an
event.

Specification met Stage 1

Ability for EC to specify the maximum number of tickets which
can be sold per event.

Specification met Stage 1

The system should have the ability to generate and print/email
tickets.

Specification not met Stage 1

Each booking should be able to contain several tickets. Specification met Stage 1
System should retain customer data for subsequent bookings. Specification met Stage 1
Some level of security and account management. Specification met Stage 1
Different levels of access for EC and Agent. Specification met Stage 1
EC/Agent should be able to verify the identity of the Customer. Specification met Stage 2
Events should have the ability to handle a complex schedule. Specification not met Stage 2

Could Have
Ability for EC to design a custom ticket template to be
printed/emailed to customer.

Specification not met Stage 1

Notify customers automatically by email if an event they have
booked has been edited.

Specification not met Stage 1

Ability for EC to create discount codes which are automatically
applied to a booking.

Specification not met Stage 1

The system could generate and distribute marketing emails to
customers held within the database.

Specification not met Stage 1

The system could handle payment processing through some
third party API.

Specification not met Stage 1

The system should make it easy for the user to see what
elements are interactable and be easy to navigate.

Specification met Stage 2

16

Feature Status Added
Won’t Have

Online integration with event websites. Specification not met Stage 1
The customer will not be able to make their own bookings
online.

Specification not met Stage 1

The customer will not be able to view their own bookings or
booking history.

Specification not met Stage 1

Any kind of registration page—not necessary in stage 1. Specification not met Stage 1
Google Maps integration when showing event locations. Specification not met Stage 1
Credit card processing/data handling. Specification not met Stage 1

2.2. Functional requirements
2.2.1. Complex Event Handling
“Events should have the ability to handle a complex schedule”. This feature was added as a direct
result of feedback received from Stage 1 (F5.6). We first discussed how we could go about adding
this functionality and came up with a couple different ways to do it.

The first idea was to have a new attribute in the event table to record whether the event was
repeatable weekly and if so, have a script on the database that would run every week and duplicate
those events for the following two or three weeks. We did not like this approach, however, as it took
processing away from our application itself, and could easily mess up (duplicating duplicated events
every week).

Another idea we explored was to have the start and end dates and times be set in an ArrayList which
could be added to either manually or automatically for repeating events. This would require a new
table in the database and additional code in DatabaseManager to handle loading from the new
table. The Event class would need to be adjusted, as would the unit tests. EventListView would need
to be adjusted to show multiple dates and times for an event, and there would need to be changes
to EventView and additional code written in EventViewPresenter to allow the user to easily add new
dates to an event. This concept proved cumbersome in execution, however, as it was difficult to
show multiple dates on an event in the EventListView, so with time running out we had to go back
and think of another implementation.

The final idea we decided on was to have the ability to easily duplicate an event while providing a
different start and end date. This would be in the form of a button on EventView which would simply
duplicate the current entry without a date and time and allow the user to input a new date and time
and save it. It was an improvement on what we started with, but we felt it did not quite solve the
issue we felt was highlighted in F5.6 and so we shelved the development and stashed these changes
for after other features were completed. Unfortunately, however, these other features took longer
to implement than we expected and so this feature was not realised by the due date.

17

2.3. Non-functional requirements
2.3.1. Encryption System
“Some level of security and account management”. Although this feature was added to the
MoSCoW analysis in Stage 1, it was not fully realised in the application until Stage 2. In Stage 1, we
added the ability for the user to add and delete customers, as well as change their passwords should
the customer wish to do so. However, these passwords (and the passwords for staff members) were
held in plaintext in the database. We recognised that this was a big security issue at the time and as
it was also picked up in our Stage 1 feedback (F5.4) we knew we needed to spend a large part of
Stage 2 on this.

The implementation of this system proved more challenging than we had first expected, as
everything built in Stage 1 relied on the password being transmitted and stored as a String, but
password hashes are byte arrays. In addition, we also needed to deal with password salting, as
salting and hashing passwords (with multiple passes) is the industry standard these days. To do this,
we created an Encryption class to generate salts and hashes. We then modified all User classes
(including EventCoordinator, Agent and Customer classes) to handle passwords as byte arrays and
hold the password salt. We had to change the design of the database to handle passwords as BLOBs
and add a new field for salt BLOBs. We then and modified the method for adding new customers so
it took the customer object and a plaintext password as a String, called on the new Encryption
methods and stored this information in the database along with the other customer information. We
re-wrote the code for authentication to pull the salt and hash from the database, then generate a
hash based off of the password entered by the user in the Login form and the salt from the database
and compare the two hash arrays – if the arrays match then the password is the same and the user is
authenticated as before.

Following this implementation, we realised that all the unit tests regarding adding customers to the
database, and anything dealing with users or authentication which were written early on were now
broken so these had to be rewritten and rerun to ensure they still performed correctly. These
modified unit tests can be found in appendix A4.5. User Unit Tests.

There was some temporary code added to generate salts and hashes for existing users in the
database and test the hash matched a hash generated from their previous plaintext password.
However, this code was removed from the application before the update was pushed and so it
unfortunately cannot be included here.

“EC/Agent should be able to verify the identity of the Customer”. This is a new feature for Stage 2
which came about early on while thinking of aspects of security for the above feature. We
understood that we wanted a way for staff to verify the identity of Customers as impersonation
would be possible under the Stage 1 system which could be another security concern.

Once the above encryption feature was complete, we began work on modifying the booking
view/edit screen to accommodate this new feature. With this feature, we realised that the phrase
‘password’ did not make sense to use regarding customers as they were no longer logging in to the
system themselves but through a proxy. In line with what some other businesses do in this situation,
we renamed usages of ‘Password’ to ‘Secret Word’ where customers are concerned, which gives a
distinction between something that should be hidden from view (password) and something that the
user will need to see in order to ensure they have the correct spelling. We decided that this should
mean that any entering of a Secret Word should not be masked, but that we could keep secret

18

words as hashes in the database as the functionality was already set up for it and it would be the
safer option.

For implementation, the mini form in the middle of the screen, shown in Figure 6, takes a plaintext
string and upon clicking the ‘Verify’ button, creates a hash from the chosen customer’s salt and
compares this hash to the hash stored on that customer object. If the two hashes match, a success
message is printed to an empty label under the verify button. The code for this can be found in
appendix A5.3. BookingViewPresenter : verifySecretWord().

A small piece of code was also added to the Save Booking button to ensure that the form could not
be saved unless the customer was verified first. This code can be found in appendix A5.4.
BookingViewPresenter : SaveBookingButtonPressed() snippet.

2.3.2. UI Redesign
“The system should make it easy for the user to see what elements are interactable and be easy to
navigate”. Following on from the design in Stage 1, we decided that this should be a feature we
should draw more notice to in Stage 2, especially as it was picked up in feedback F5.1 that certain
elements were not well designed. We decided that to start, we would make changes that would fulfil
the requirements of the feedback, mainly by making the buttons stand out more. Second to this, we
wanted to completely overhaul the UI from the ground up to make it look much less like a basic
JavaFX window and more like a modern app. To this end we researched different modern UI style
guides and settled on Material Design. This is the style that Google has used for the past few years
and can be seen in their apps and web applications and is a style which many other developers have
begun to use in recent years. Ultimately however, we did not have the time to incorporate this into
the project but some reference material can be found in the links in 4. References.

The additional changes that were made were to increase the size of the buttons and make them
bold, add colour to certain buttons and increase the font size of the UI elements in general to make
them easier to read on modern high-resolution displays. This can be seen in appendix A1.
Application Screenshots to show UI changes.

19

2.4. Object Oriented Analysis (OOA)

2.5. Object Oriented Design (OOD)
2.5.1. Model class diagram (final iteration)
(Diagram shown on following page)

20

21

2.5.2. MVP diagram (final iteration)

22

2.6. Implementation
2.6.1. Details
For stage two, we have stuck with using Java and JavaFX and writing in IntelliJ. This is because we felt
the setup used in stage one could give us all the functionality we need, in an environment that we
are already familiar with. Porting the codebase to Python did not make sense to us after the revision
to the stage two requirements.

We are not using a framework or package manager for stage two as we feel it is not necessary for us
to achieve what we need to do. Our DBMS is SQLite integrated into Java using JDBC (sqlite-jdbc-
3.30.1). This allows us to manage the database itself from within IntelliJ as well as have Java
understand the SQL statements we wrote. For testing, we have used JUnit. This was an easy decision
for us due to how well it is integrated into IntelliJ and the Java ecosystem.

Regarding external APIs and Libraries, we use the Javax mail and activation libraries to handle
connection to our external email account and the sending of emails, all via our Email package.

2.6.2. Front end (UI/View) state diagram (final iteration)
State diagram showing actions of the Event Coordinator.

23

2.6.3. Front end design (final iteration)
From the main page when we double click on Events, we have the Event List Page as shown below.
The details of the events are shown; Event Name, Venue, Start Time and Tickets remaining. The
Event Coordinator can choose to “Create new Event” and “Delete Selected Event”

2.6.4. Sequence diagrams (final iteration)
Sequence diagram showing the login procedure of the Agent.

24

2.6.5. Application specific code
The following are links to specific code in the appendix referenced elsewhere in this report.
A5.1. DatabaseManager.java : deleteBooking()
A5.2. DatabaseManager.java : deleteEvent()
A5.3. BookingViewPresenter : verifySecretWord()
A5.4. BookingViewPresenter : SaveBookingButtonPressed() snippet

2.6.6. Testing
In stage one, we did not have much opportunity for testing due to a tight schedule and some sub-par
organisation on our part. This was remedied in stage two, in which we undertook extensive white
box testing from day one, and plans were drawn up for black box user testing also.

2.6.6.1. Unit tests (dynamic white box)
JUnit was used to construct unit tests for all relevant model classes. Each method within a class was
tested; dummy data was provided, and the expected result was asserted by the test. If the result
was not as expected, the test would fail. By limiting the scope of the test to a single method, bugs
could be quickly identified and rectified. Constructing unit tests early and running them often
throughout development reduces the overall cost incurred by fixing bugs further down the line.

Certain classes were unsuitable, as they only contained simple getter/setter methods; testing these
is essentially the same as testing the JVM, thus not very useful.

A more detailed description of the individual unit tests can be found in appendix A4. White Box
Testing .

2.6.6.2. User test (dynamic black box)
Ideally any software product must be tested by those intended to use it. Unfortunately, global
circumstances prevented us from implementing the kind of user tests we otherwise would have.
However, plans were made to outline the method we would have used.

Testers would have been selected from our personal acquaintances. Perhaps counter-intuitively, we
would have selected those who had limited technical aptitude, as these are the kind of testers who
are likely to home in on concepts or UI elements which developers take for granted. A list of actions
would have been provided for them to accomplish using the software, during which they would have
been observed (Moderated Usability Test). Finally, a simple questionnaire would have been
provided, asking the tester about their experience. This feedback would then have been considered
in the next iteration of the development process, especially if certain suggestions were frequently
made.

Questionnaire draft: All statements would be answered on a scale from 1 to 7, with 1 being Strongly
Disagree, and 7 being Strongly Agree.

• It was easy to use the system.
• The information (on screen messages) provided with the system were clear.
• When I made a mistake with the system, I could recover quickly and easily.
• I liked the aesthetics of the system.
• The organisation of information on the screens was clear.
• The provided tasks were clear and not confusing.
• The system has all the functionality and capability I expect it to have.

25

• Further suggestions or comments:

This method of usability testing would have worked well for us, given the timeframe and access to
participants, however it is not without its faults. Moderated Usability Testing is intuitive, and allows
the developer to get immediate feedback on why a tester performed a specific action, or their
attitude towards certain features. The observer can also help to clear confusion on the tester’s part
and understand their cognitive processes. It is difficult, however, not to influence the tester with
instructions, and the observer can impede the natural understanding which the user would have
come to on their own.

Questionnaires allow you to quantify data which is otherwise subjective and fuzzy. This gives you a
solid foundation on which to build future development. However, it is extremely difficult as a
developer to ask the right questions, and not be influenced by your own bias.

26

4. References
Material Design:
Material Design Components: https://material.io/components
Material for Java: http://www.jfoenix.com/
UI Design Example: https://www.youtube.com/watch?v=4vTc6UZcIH4
Accessibility ideas: https://gov.uk/ & https://www.youtube.com/watch?v=JHaLzm-FGsc

https://material.io/components
http://www.jfoenix.com/
https://www.youtube.com/watch?v=4vTc6UZcIH4
https://gov.uk/
https://www.youtube.com/watch?v=JHaLzm-FGsc

27

5. Glossary
• Event Coordinator (aka. “EC”) – User responsible for adding, editing, and deleting Events

from the System. User in charge of the organisation of an event.
• Customer – User who contacts an Agent to make a booking for an Event.
• Agent – User responsible for liaising with Customers and creating Bookings.
• Staff – Users holding an EC or Agent account who interact directly with the system.
• Event – The collection of details Concert, Party, Premiere etc.
• Booking (Verb) – The process of booking an event, undertaken by an Agent - confirmation is

received after request is accepted by the System.
• Booking (Noun) - The output of the booking process, stored within the system’s database.
• Venue – Location booked for an event.
• Account Login – Validation process for a given email and password.
• Database – Records all information relating to Events, Users and Bookings.
• Ticket – Physical or digital information given to a Customer which allows access to an Event.
• TicketType (TT)– Description of a type of Ticket attached to an event e.g. VIP, Standard.
• Sundry – An additional item attached to an Event, available for purchase by a Customer

when making a Booking.

28

APPENDIX

A1. Application Screenshots to show UI changes

Figure 1 - Login Screen showing larger fonts, new Login button design and password masking.

Figure 2 - Dashboard when logged in as an Event Coordinator. Note the larger font and use of colour in the left bar.

29

Figure 3 - Events List screen showing larger, colour-coded buttons.

Figure 4 - Edit Event screen. The fonts and buttons are larger overall, and the save button is now colour-coded. The Add
New Event screen is the same as this.

30

Figure 5 - Bookings List. Again, showing larger, colour-coded buttons.

31

Figure 6 - New Booking screen. All elements have been increased in size where possible and spacing adjusted. This also
shows the new Customer Verification feature.

Figure 7 - Customer List screen. Buttons changed here again to match the rest of the application.

32

Figure 8 - Customer Edit screen. Elements repositioned and increased in size, and title added. Mouseover added to "secret
word" label with additional information. The Add New Customer screen is the same but with empty fields.

Figure 9 - Customer Add/Edit Mouseover. The mouseover popup that appears explains what Secret Word means.

33

Figure 10 - Reports screen. This has not changed for Stage 2 but is featured here for completeness.

34

A2. Event View as Agent

The Event view screen changes when logged in as an agent to ensure that the fields cannot be edited
and the buttons to submit changes or delete the event are removed. Compare Figure 4 to the
screenshot below.

Figure 11 – View Event screen when logged in as an Agent

35

A3. Folder Organisation
As noted on the feedback (F5.5), the application code for Stage
1 was not organised very well which made it hard to find the
files you wanted. The project has now been refactored into
Model, View, Presenter and Testing folders, with specific files
for Database and Email found in the Model folder. The new
layout is shown in detail on the left.

This makes it far easier to find the files needed within the
project, especially between those in the Presenter and the
Model as they all have the same icon.

36

A4. White Box Testing Code
A4.1. DatabaseManager Test Setup
class DatabaseManagerTest {

 private static DatabaseManager db = new DatabaseManager();
 private static EventsCoordinator dave = new
 EventsCoordinator("dave@ebss.com");
 private static Agent rachel = new Agent("rachel@ebss.com");
 private static Customer angela = new Customer("angela@stuff.com",
 "123 Fake St.");
 private static Event e;
 private static Booking newBooking;

 @BeforeEach
 void beforeEach() {
 db.addUser(dave, "password");
 db.addUser(rachel, "thisisapassword");
 db.addCustomer(angela, "supersecurepassword");

 //create beginning and end for dummy event
 ZonedDateTime beginning = ZonedDateTime.of(LocalDate.now(),
 LocalTime.parse("18:00"),
 ZoneId.systemDefault());
 ZonedDateTime end = ZonedDateTime.of(LocalDate.now(),
 LocalTime.parse("23:00"),
 ZoneId.systemDefault());

 //create at least one ticket type for dummy event
 TicketType newTicketType = new TicketType("Test ticket type", 1200,
 "Test ticket description.", 500);
 ArrayList<TicketType> ticketTypes = new ArrayList();
 ticketTypes.add(newTicketType);

 //create an optional sundry for dummy event
 Sundry newSundry = new Sundry("Test sundry", 500,
 "Test sundry description", 500);
 ArrayList<Sundry> sundries = new ArrayList();
 sundries.add(newSundry);

 e = new Event("Norwich Forum", beginning, end, "A test event.",
 "Test Event", Event.EventType.OTHER,
 ticketTypes, sundries, dave);
 db.addEvent(e);
 }

A4.2. DatabaseManager unit tests
@Test
void authenticateUser() {
 assertNotNull(db.getUser("dave@ebss.com"));
}

@Test
void getCustomerSet() {
 assertEquals("angela@stuff.com",
 db.getCustomerSet().get(db.getCustomerSet().size() - 1).getUsername());
}

37

@Test
void getECSet() {
 assertEquals("dave@ebss.com", db.getECSet().get(db.getECSet()
 .size() – 1).getUsername());
}

@Test
void getEventSet() {
 assertEquals("Test Event", db.getEventSet().get(db.getEventSet()
 .size() - 1).getEventName());
}

@Test
void getBookingSet() {
 Booking newBooking = new Booking(e, angela, false);
 db.addBooking(newBooking);
 assertEquals("angela@stuff.com",
 db.getBookingSet(e).get(db.getBookingSet(e)
 .size() - 1).getCustomer().getUsername());
}

@Test
void getUser() {
 assertEquals("dave@ebss.com", db.getUser("dave@ebss.com").getUsername());
}

@Test
void getCustomer() {
 assertEquals("angela@stuff.com",
 db.getCustomer("angela@stuff.com").getUsername());
}

@Test
void getEvent() {
 int id = db.getEventSet().get(db.getEventSet().size() - 1).getEventID();
 assertEquals("Test Event", db.getEvent(id).getEventName());
}

@Test
void getUpcomingEvent() {
 //Test event must be inserted as soonest upcoming event
 assertEquals("Test Event", db.getUpcomingEvent().getEventName());
}

@Test
void getAllProfits() {
 assertNotEquals(- 1, db.getAllProfits());
}

@Test
void getBooking() {
 Booking b = new Booking(e, angela, false);
 db.addBooking(b);
 assertEquals("angela@stuff.com",
 db.getBooking(e, db.getBookingSet(e).get(db.getBookingSet(e)
 .size() - 1).getBookingID()).getCustomer().getUsername());
}

38

@Test
void addUser() {
 Agent a = new Agent("joe@ebss.com");
 assertTrue(db.addUser(a, "agreatpassword"));
 db.deleteUser(a);
}

@Test
void addCustomer() {
 Customer c = new Customer("henry@stuff.com", "234 New Town, USA");
 assertTrue(db.addCustomer(c, "fantasticpassword"));
 db.deleteUser(c);
}

@Test
void addTicketType() {
 TicketType newTicketType = new TicketType("VIP Ticket", 2300,
 "A very special ticket.", 50);
 assertTrue(db.addTicketType(newTicketType));
}

@Test
void addSundry() {
 Sundry s = new Sundry("Ice cream", 500, "A tasty treat.", 2000);
 assertTrue(db.addSundry(s));
}

@Test
void linkEventToTT() {
 TicketType newTicketType = new TicketType("Standard Ticket", 1500,
 "A regular ticket.", 200);
 assertTrue(db.addTicketType(newTicketType));
 assertTrue(db.linkEventToTT(e, newTicketType));
}

@Test
void linkEventToSundry() {
 Sundry s = new Sundry("Popcorn", 300, "A crunchy snack", 2000);
 assertTrue(db.addSundry(s));
 assertTrue(db.linkEventToSundry(e, s));
}

@Test
void addEvent() {
 //create beginning and end for dummy event
 ZonedDateTime beginning = ZonedDateTime.of(LocalDate.now(),
 LocalTime.parse("18:00"),
 ZoneId.systemDefault());
 ZonedDateTime end = ZonedDateTime.of(LocalDate.now(),
 LocalTime.parse("23:00"),
 ZoneId.systemDefault());

 //create at least one ticket type for dummy event
 TicketType newTicketType = new TicketType("Test ticket type", 1200,
 "Test ticket description.", 500);
 ArrayList<TicketType> ticketTypes = new ArrayList();
 ticketTypes.add(newTicketType);

39

 //create an optional sundry for dummy event
 Sundry newSundry = new Sundry("Test sundry", 500,
 "Test sundry description", 500);
 ArrayList<Sundry> sundries = new ArrayList();
 sundries.add(newSundry);

 e = new Event("Norwich Forum", beginning, end, "A test event.", "Test Event",
 Event.EventType.OTHER, ticketTypes, sundries, dave);
 assertTrue(db.addEvent(e));
}

@Test
void linkBookingToSundry() {
 Sundry s = new Sundry("Test sundry", 4000, "A test sundry.", 300);
 newBooking = new Booking(e, angela, false);
 assertTrue(db.linkBookingToSundry(newBooking, s));
}

@Test
void addBooking() {
 newBooking = new Booking(e, angela, false);
 assertTrue(db.addBooking(newBooking));
}

@Test
void updateUser() {
 dave.resetPassword("newpassword");
 byte[] daveHash = Encryption.generateHash(dave.getSalt(), "newpassword");
 assertTrue(db.updateUser(dave));
 assertEquals(daveHash, db.getUser("dave@ebss.com").getPassword());
}

@Test
void updateCustomer() {
 angela.resetPassword("newpassword");
 byte[] angelaHash = Encryption.generateHash(angela.getSalt(), "newpassword");
 assertTrue(db.updateCustomer(angela));
 assertEquals(angelaHash, db.getCustomer("angela@stuff.com").getPassword());
}

@Test
void updateTicketType() {
 TicketType newTicketType = new TicketType("Test ticket type", 3000,
 "Test ticket description.", 400);
 db.addTicketType(newTicketType);
 db.linkEventToTT(e, newTicketType);
 newTicketType.setDescription("Edited description.");
 assertTrue(db.updateTicketType(newTicketType));
}

@Test
void updateSundry() {
 Sundry s = new Sundry("New sundry", 3000, "Another test sundry.", 400);
 db.addSundry(s);
 db.linkEventToSundry(e, s);
 s.setDescription("Edited description.");
 assertTrue(db.updateSundry(s));
}

40

@Test
void updateEvent() {
 e.setDescription("Edited description.");
 assertTrue(db.updateEvent(e));
}

@Test
void updateBooking() {
 Booking b = new Booking(e, angela, false);
 db.addBooking(b);
 assertTrue(db.updateBooking(b));
}

@Test
void deleteUser() {
 assertTrue(db.deleteUser(rachel));
}

@Test
void deleteBooking() {
 Booking b = new Booking(e, angela, false);
 db.addBooking(b);
 assertTrue(db.deleteBooking(db.getBookingSet(e).get(db.getBookingSet(e)
 .size() - 1).getBookingID()));
}

@Test
void deleteEvent() {
 assertTrue(db.deleteEvent(e));
}

A4.3. DatabaseManager Test Cleanup
@AfterEach
void afterEach() {
 db.deleteUser(dave);
 db.deleteUser(rachel);
 db.deleteUser(angela);
 db.deleteEvent(e);
}

A4.4. User Test Setup
class UserTest {
 private static DatabaseManager db = new DatabaseManager();
 private static EventsCoordinator dave = new
 EventsCoordinator("dave@ebss.com");
 private static Agent rachel = new Agent("rachel@ebss.com");
 private static Customer angela = new Customer("angela@stuff.com",
 "123 Fake St.");

 @BeforeAll
 static void beforeAll() {
 db.addUser(dave, "password");
 db.addUser(rachel, "thisisapassword");
 db.addCustomer(angela, "supersecurepassword");
 }

41

A4.5. User Unit Tests
@Test
void resetPassword() {
 dave.resetPassword("password123");
 byte[] davePwd = Encryption.generateHash(dave.salt, "password123");
 assertEquals(davePwd, dave.getPassword());

 rachel.resetPassword("password123");
 byte[] rachelPwd = Encryption.generateHash(rachel.salt, "password123");
 assertEquals(rachelPwd, rachel.getPassword());

 angela.resetPassword("password123");
 byte[] angelaPwd = Encryption.generateHash(angela.salt, "password123");
 assertEquals(angelaPwd, angela.getPassword());
}

@Test
void authenticate() {
 User u = User.authenticate("dave@ebss.com", "password123");
 assertNotNull(u);
 assertEquals("dave@ebss.com", u.getUsername());
}

A4.6. User Test Clean-up
@AfterAll
static void afterAll() {
 db.deleteUser(dave);
 db.deleteUser(rachel);
 db.deleteUser(angela);
}

42

A5. Code Snippets
A5.1. DatabaseManager.java : deleteBooking()
public boolean deleteBooking(int bookingID) {
 // Delete from booking, booking_sundry and ticket in one transaction
 try(Connection conn = this.connect()){
 conn.setAutoCommit(false);

 String sql = "DELETE FROM booking WHERE bookingID = ?";
 PreparedStatement prep = conn.prepareStatement(sql);
 prep.setInt(1, bookingID);
 prep.executeUpdate();

 sql = "DELETE FROM booking_sundry WHERE bookingID = ?";
 prep = conn.prepareStatement(sql);
 prep.setInt(1, bookingID);
 prep.executeUpdate();

 sql = "DELETE FROM ticket WHERE bookingID = ?";
 prep = conn.prepareStatement(sql);
 prep.setInt(1, bookingID);
 prep.executeUpdate();

 conn.commit();
 conn.setAutoCommit(true);
 return true;
 }
 catch(SQLException ex){
 System.out.println("Error: " + ex.getMessage());
 }
 return false;
}

A5.2. DatabaseManager.java : deleteEvent()
public boolean deleteEvent(Event e) {
 // First get all the bookings for this event and delete them.
 ArrayList<Booking> bookings = new ArrayList<>(getBookingSet(e));
 for (Booking b : bookings){
 deleteBooking(b.getBookingID());
 }

 // Next get lists of sundryIDs and tickettypeIDs related to this Event.
 ArrayList<Sundry> sundries = e.getSundries();
 ArrayList<TicketType> ticketTypes = e.getTicketTypes();

 // Now we can delete event_sundry, sundry, event_tickettype, tickettype
 // and event entries.
 try (Connection conn = this.connect()){
 conn.setAutoCommit(false);

 String sql = "DELETE FROM event_sundry WHERE eventID = ?";
 PreparedStatement prep = conn.prepareStatement(sql);
 prep.setInt(1, e.getEventID());
 prep.executeUpdate();

 for (Sundry s : sundries) {
 sql = "DELETE FROM sundry WHERE sundryID = ?";
 prep = conn.prepareStatement(sql);

43

 prep.setInt(1, s.getSundryID());
 prep.executeUpdate();
 }

 sql = "DELETE FROM event_tickettype WHERE eventID = ?";
 prep = conn.prepareStatement(sql);
 prep.setInt(1, e.getEventID());
 prep.executeUpdate();

 for (TicketType tt : ticketTypes) {
 sql = "DELETE FROM tickettype WHERE ticketTypeID = ?";
 prep = conn.prepareStatement(sql);
 prep.setInt(1, tt.getTicketTypeID());
 prep.executeUpdate();
 }

 sql = "DELETE FROM event WHERE eventID = ?";
 prep = conn.prepareStatement(sql);
 prep.setInt(1, e.getEventID());
 prep.executeUpdate();

 conn.commit();
 conn.setAutoCommit(true);
 return true;
 }
 catch (SQLException ex) {
 System.out.println("Error: " + ex.getMessage());
 }
 return false;
}

A5.3. BookingViewPresenter : verifySecretWord()
public void verifySecretWord(){
 Customer c = customerTable.getSelectionModel().getSelectedItem();
 if (c != null){ ;
 byte[] providedPwd = Encryption.generateHash(c.getSalt(),
 secretWord.getText());
 boolean match = true;
 // compare each byte of the hash of the provided password with the
 password held in the DB.
 for (int i = 0; i < 16; i++) {
 if (providedPwd[i] != c.getPassword()[i]){
 match = false;
 }
 }
 if (match){
 verifyStatus.setText("Secret Word Verified");
 verified = true;
 }
 else{
 verifyStatus.setText("Secret Word not verified");
 verified = false;
 }
 }
 else{
 verifyStatus.setText("Please select a Customer");
 }
}

44

A5.4. BookingViewPresenter : SaveBookingButtonPressed() snippet
else if (!verified) {
 successMessage.setText("Please verify customer Secret Word.");
}

	1. Stage 1 Feedback Address (S2.1 in mark sheet)
	1.1. Table of Contents for Feedback
	1.2. Revised Feature Matrix
	1.3. Revised Textual Use Case
	1.4. Revised Natural Language Modelling
	1.4.1. Events Coordinator (EC)
	1.4.2. Agent
	1.4.3. Customer

	2. Stage 2 Additional Requirements and Updates (S2.2. in mark sheet)
	2.1. Revised MoSCoW
	2.2. Functional requirements
	2.2.1. Complex Event Handling

	2.3. Non-functional requirements
	2.3.1. Encryption System
	2.3.2. UI Redesign

	2.4. Object Oriented Analysis (OOA)
	2.5. Object Oriented Design (OOD)
	2.5.1. Model class diagram (final iteration)
	2.5.2. MVP diagram (final iteration)
	2.6. Implementation
	2.6.1. Details
	2.6.2. Front end (UI/View) state diagram (final iteration)
	2.6.3. Front end design (final iteration)
	2.6.4. Sequence diagrams (final iteration)
	2.6.5. Application specific code
	2.6.6. Testing
	2.6.6.1. Unit tests (dynamic white box)
	2.6.6.2. User test (dynamic black box)

	4. References
	5. Glossary
	APPENDIX
	A1. Application Screenshots to show UI changes
	A2. Event View as Agent
	A3. Folder Organisation
	A4. White Box Testing Code
	A4.1. DatabaseManager Test Setup
	A4.2. DatabaseManager unit tests
	A4.3. DatabaseManager Test Cleanup
	A4.4. User Test Setup
	A4.5. User Unit Tests
	A4.6. User Test Clean-up

	A5. Code Snippets
	A5.1. DatabaseManager.java : deleteBooking()
	A5.2. DatabaseManager.java : deleteEvent()
	A5.3. BookingViewPresenter : verifySecretWord()
	A5.4. BookingViewPresenter : SaveBookingButtonPressed() snippet

