
Miniproject 4 – ANOVA, ANCOVA and  
Survival Analysis 

StudentID 100225776      Applied Statistics 

Question 1 
We will use ANAOVA and ANCOVA to analyse the yield of cocoa plants grouped by height and by 
genotype to discover relationships in the data. 
 

Part A – Visual Interpretation of Data 
For this part I have generated two boxplots (with 
associated Stripcharts), one tracking the crop 
yield grouped by Heightgroup, the other with the 
yield grouped by the Genotype. In both, the data 
has been given a random horizontal jitter to 
make it easier to see samples with similar yields. 
 
Figure 1 shows data grouped by Heightgroup. 
From this we can clearly see that on average the 
taller plants produce a greater yield of cocoa 
pods, approximately five more pods per plant per 
year or approximately a 20% greater yield over 
the shorter plants, on average. The taller plants 
have a distribution with a longer tail towards the 
upper bound of the range, suggesting this may 
not be a normal distribution. The shorter plants 
are distributed more normally however there is a 
single value at the lowest bound of this group which appears significantly different from the rest of 
the set however this may be due to the relatively small sample size of the results and is still within 
the bounds of the set. Both data sets have the majority of their results sitting on or within the 
interquartile ranges of their groups, and the most productive plant from the high group has over 
twice the yield of the least productive plant in the low group. The plots suggest there is a clear 
difference in the yield of a plant based on what height group that plant sits within. 
 
Figure 2 shows the same data as Figure 1, but grouped by genotype instead. We can see from this 
grouping that there is now one confirmed outlier, in group AA. This outlier could be a false reading 
(incorrect count of pods) which is highly possible as no other tree supposedly produced as high of a 
yield as that one did, and the value of 31 would place it in an acceptable position on both plots. It 
could also be a sign of a heavily tailed distribution. If the latter is true, we should be careful in 
assuming the distribution is normal and test for it. Aside from the outlier value, we have two values 
which are extreme but within the bounds of the set. The spread within each group is quite tight, 
with almost every value appearing within the interquartile range, though this is likely due to only 
having a few samples per group. The spread for group AA is very tight, implying that a plant with the 
AA genotype will almost certainly produce a yield in the 30-35 pod-per-year range, however the 
outlier value in this group pushes the mean to close to the third quartile. Despite there being only a 

Figure 1- Crop yields by Heightgroup 
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few samples per group, it is reasonable to say there is a difference between the yield of the plant 
based on its genotype. 
 

 
 
 
Figure 3 shows an interaction plot between genotypes for high plants compared to genotypes for 
low plants. As the lines begin to converge at Genotype AA, we can say that there is only a small 
interaction between Genotype and Yield. Figure 4 better shows this lack of interaction, where the 
plots for genotypes AA and aa in parallel show no interaction. Genotype Aa at an angle shows some 
slight interaction. In general, however, I would say this interaction is not statistically significant as 
the lines in both cases are mostly parallel and do not meet or cross at any point. This is surprising to 
me as I initially expected (from figure 1 and 2) that since the AA genotype produced taller trees, and 
taller trees produced a larger yield (and vice versa for the aa genotype), that there would be an 
interaction between the two.  

 

Figure 2 - Crop yields by Genotype 

Figure 3 - Interaction Plot between Genotype and height group Figure 4 – Interaction between height group and Genotype 
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Part B – Two-Way ANOVA Interpretation 
The two-way ANOVA will be used to test the below significant effects: 

1. H0 = The means of our observations grouped by Genotype are the same. 
2. H0 = The means of our observations grouped by Heightgroup are the same. 
3. H0 = There is no interaction between Genotype and Heightgroup. 
4. H0 = There are no significant effects present. 

 
In addition, we also look to see if  
To begin, we must first check for the data balance of observations across the groups. Since the 
variables Genotype and Heightgroup are not numerical, they are automatically treated as factors, so 
we can simply draw a table from them. 
 
See Appendix A – R Commands – Lines 37-39. 
 
Spread of observations per group: 

 Genotype 
Heightgroup aa Aa AA 
High 3 3 3 
Low 3 3 3 

 
From these results we can see that the data are balanced with three observations within each group, 
so we can proceed with the two-way ANOVA. 
We will use the ANOVA model 

𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖 = 𝜇𝜇 + 𝛼𝛼𝑖𝑖 + 𝛽𝛽𝑗𝑗 + (𝛼𝛼𝛼𝛼)𝑖𝑖𝑖𝑖 + 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 
 
to run a two-way ANOVA on our given data set, where 𝛼𝛼𝑖𝑖 are the effects of Heightgroup on Yield, 𝛽𝛽𝑗𝑗 
are the effects of Genotype on Yield and (𝛼𝛼𝛼𝛼)𝑖𝑖𝑖𝑖 are the interaction effects between Heightgroup 
and Genotype. We create contrasts to ensure parameter estimates are unique, which is achieved 
using the contrast sum function (contr.sum) in R. We then run a linear model on our data set to 
produce the two-way ANOVA. 
 
See Appendix A – R Commands – Lines 50-54. 
 
Two-way ANOVA of Yield against Heightgroup and Genotype: 

              Df   Sum Sq Mean Sq F value    Pr(>F) 
Heightgroup  1  162.000 162.000 23.7073 0.0003856 

Genotype         2  203.444 101.722 14.8862 0.0005620 
Heightgroup: Genotype       2    4.333   2.167  0.3171 0.7341961 

Residuals     12   82.000   6.833   
 
These results tell us that Yield is dependent on Heightgroup (P = 0.0003856) and that Yield is also 
dependant on Genotype (P = 0.000562). This allows us to reject our first and second null hypotheses. 

We can also see that there is no significant interaction between Heightgroup and Genotype (p = 
0.7342), as predicted from our interaction plots. This allows us to accept the third null hypothesis 
that there is no interaction between Genotype and Heightgroup. To test our fourth null hypothesis, 
we use the summary() function in R: 



100225776 Applied Statistics Miniproject 4 

- 4 - 

 
See Appendix A – R Commands – Lines 50-82. 

Summary of ANOVA significant effects: 
                Estimate Std. Error t value Pr(>|t|) 

(Intercept)  30.8889     0.6161  50.133  2.6e-15 
Heightgroup   3.0000     0.6161   4.869 0.000386 

Genotype         -4.3889     0.8714  -5.037 0.000291 
Genotype 2         0.6111     0.8714   0.701 0.496471 

Heightgroup: Genotype    0.1667     0.8714   0.191 0.851510 
Heightgroup: Genotype 2   0.5000     0.8714   0.574 0.576687 

RSE: 2.614 on 12 df. Multiple R2:  0.8185. Adjusted R2:  0.7429. F-statistic: 10.82 on 5 and 12 DF.   
P-value: 0.0004069. 

From the above results we can see that there is high significance in the results (P = 0.0004069), 
which is below the significance level of 0.05 which means that our fourth null hypothesis should be 
rejected, and we accept that significant effects are present. 

We can find parameter estimates from running results$coefficients. However, then the 
coefficients would need to be calculated manually. The easier way of computing this is with 
tapply(), which will compare against all sample means and find 𝑥𝑥𝑥ij. From the ANOVA significant 
effects table, we can see that the overall average is 30.8889 and the sum of squares is 162. Once the 
parameter estimates have been found, we need to find the confidence interval. For this test, our 
confidence level is 0.95 as our chosen significance level is 0.05. We can see from the above table 
that the Residual Standard Error (RSE) is 2.614 on 12 degrees of freedom. Since each of the three 
Genotype groups contains 9 observations each, the standard error of each mean is:  

𝑀𝑀𝑀𝑀(𝐸𝐸)
√9

 =  
6.833

3
=  2.2778 

The variance is twice larger and so standard deviation is: 

𝑀𝑀𝑀𝑀(𝐸𝐸)
√4.5

 =  
6.8333
2.1213

= 3.2213 

The critical value from t-distribution with 12 df is now needs to be found, which is then multiplied by 
RSE
√4.5

 to find the Margin of Error. The confidence intervals for each sample mean will be ± that.  

See Appendix A – R Commands – Lines 85-120. 
 
Summary of parameter estimates comparing to sample means: 

            Genotype 
HeightGroup       aa Aa AA 

high        29.66667 35 37 
low         23.33333 28 32.33333 

 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑜𝑜𝑜𝑜 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 =  𝐶𝐶𝐶𝐶 ×  
RSE
√4.5

=  2.1963 
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95% Confidence Intervals from combining the above findings: 
            Genotype 
HeightGroup aa Aa AA 

high        27.47039 to 31.86295 32.80372 to 37.19628 34.80372 to 39.19628 
low         21.13705 to 25.52961 25.80372 to 30.19628   30.13705 to 34.52961 

 
Since the value 0 does not appear in all the above ranges we can reject the null hypothesis and the 
results are deemed significant.  

We should now test the ANOVA assumptions. 

Independence is the assumption that all experiments were carried out independent from each 
other. In this case, it is expected that each tree was recorded separately and correctly. 

Normality can be tested informally by plotting standardised residuals against fitted values, or more 
formally with the use of a QQ plot. I will perform the latter to ensure we have a robust result and 
discuss the results below. 

See Appendix A – R Commands – Lines 126-129. 
 
Figure 5 shows the theoretical quartiles plotted 
against the standardized residuals. If both sets of 
quantiles came from the same (normal) set, we 
expect to see the points follow a straight line. R 
draws the line of best fit to show how close the 
quantiles fit our data, and as you can see, our data 
is quite a close fit. There are slight curves towards 
the ends of the line indicating that the distribution 
is likely tailed and has more extreme values than 
we would expect from a normal distribution. 

Finally, homogeneity of variances can be tested for 
using the Lavene Test. Our null hypothesis here is 
that we assume all groups being tested have equal 
population variances. I will perform the test in R by 
running a one-way ANOVA on the absolute 

residuals (since we are using a two-way ANOVA) and discuss the results below. 

See Appendix A – R Commands – Lines 131-152. 

Summary of Lavene Test: 
                Estimate Std. Error t value Pr(>|t|) 

(Intercept)  0.58302 0.06090 9.573 5.73e-07 
Heightgroup -0.16635 0.06090 -2.731 0.0182 

Genotype        -0.16927 0.08613 -1.965 0.0729 
Genotype 2       -0.27643 0.08613 -3.210 0.0075 

Heightgroup: Genotype  -0.16417 0.08613 -1.906 0.0809 
Heightgroup: Genotype 2  0.11847 0.08613 1.376 0.1941 

RSE: 0.2584 on 12 df. Multiple R2:  0.763. Adjusted R2:  0.6642. F-statistic: 7.725 on 5 and 12 DF.   
P-value: 0.001851. 
 

Figure 5 - QQ Plot to test for normality 
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The results of our Lavene Test show a significant P-value of 0.001851. This means that there are 
statistically significant variances per group as it is below our significance level of 0.05. This means 
that we reject the null hypothesis that all groups have equal population variances and accept that 
the differences in sample variances are unlikely to have occurred based on random sampling from a 
population with equal variances. The assumptions can be considered reasonable for this data set. 
 
Part C – ANCOVA Interpretation 
Run an ANCOVA with Genotype factor and Height covariate and look for significant effects with 
interpretation on the results. 
First, we need to ensure that the data is suitable for running a one-way ANCOVA. To do this, we plot 
the response, yield, against our covariate, height. This is shown in the results in Figure 6, below. 

See Appendix A – R Commands – Lines 129-139. 
 
As we can see from Figure 6, there is a strong 
increasing relationship between the covariate 
and the response within each factor group, and 
the slopes are similar. This gives us an ideal 
situation for using a one-way ANCOVA. 
  
Now we know we can run an ANCOVA, we must 
check the values of x̄i and ȳi to ensure they are in 
the correct range. We then centre the covariate 
on its mean and run a linear model on the 
response yield against the terms (height + 
Genotype) where height is centred, and 
genotype is grouped. 
 
See Appendix A – R Commands – Lines 141-158. 

 
Summary of ANCOVA Significant Effects: 

                Estimate Std. Error t value Pr(>|t|) 
(Intercept)  30.88889 0.19415 159.102  < 2e-16 

Height (centered)   1.72409 0.09189  18.762 2.55e-11 
Genotype         -5.14749 0.27752 -18.548 2.98e-11 

Genotype 2         0.88984 0.27496   3.236  0.00597 
RSE: 0.8237 on 14 df. Multiple R2:  0.979. Adjusted R2:  0.9745. F-statistic: 217.3 on 3 and 14 DF.   
P-value: 5.653e-12. 
 
ANCOVA of Yield against Height Covariate and Genotype Factor: 

              Df   Sum Sq Mean Sq F value    Pr(>F) 
Height (centered)  1  175.444 175.444 258.59 2.020e-10 

Genotype         2 266.835 133.417 196.65 5.669e-11 
Residuals     14 9.498   0.678   

 
This shows that both the Height and Genotype have high statistical significance and Genotype 2 has 
a lesser significance but still statistically significant, which allows us to reject the null hypothesis that 
height and genotype do not have a significant effect on yield. We can see the overall p-value is 

Figure 6 - Relationship of Response to Covariate 
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5.653e-12, which is highly statistically significant and is below the significance level of 0.05 which 
means that our null hypothesis should be rejected, and we accept that significant effects are 
present. We can tell from these details that the ANCOVA results fit much better than those results 
found running a two-way ANOVA, meaning the ANCOVA is a better model for this data set. 
 

Part D – Analysis of Height as a suitable ANCOVA Covariate 
From the terms we were given in this data set, we had the choice of setting the covariate as either 
height or age. We know that the covariate must be a variable that is related to the dependant 
variable, in this case, yield, and not have a correlation with the factor, genotype. From what we have 
seen, there is a correlation of height to yield and no correlation of height to genotype, which makes 
height a good covariate candidate. Regarding age, although we haven’t tested for it, we can expect 
that the age of a tree generally would not have a correlation with its yield beyond the first few years 
of growth, and we can’t be sure that the age of a tree would have a correlation with its genotype 
(could certain genotypes live longer? This could be something we could test for separately). These 
two reasons would mean that age would not be as good for a covariate as height is. 
 

Part E – Analysis of ANOVA vs ANCOVA 
We can compare the results of an ANOVA and ANCOVA by finding the relative efficiency (𝑒𝑒) between 
them. For this we divide the MS(E) of one method by the other. In our case, the MS(E) of our ANOVA 
was 6.833 and the ANCOVA had a MS(E) of 0.678. 

𝑒𝑒(T1, T2) =
𝑀𝑀𝑀𝑀(𝐸𝐸)ANOVA
𝑀𝑀𝑀𝑀(𝐸𝐸)ANCOVA

=
6.833
0.678

= 10.0782 

 
We can say from this result that the ANCOVA is over ten times as efficient at predicting a relation 
between terms and response. This means we can get the same prediction with an ANCOVA on this 
data set by using use ten times less data compared to the prediction made from the ANOVA. 
 
The suitability of a model can generally be summed up in the R2 value given from summary. This is 
the statistical measure of the variance for a dependant variable explained by an independent 
variable, AKA the coefficient of determination: 

R2  =  1 – 
SSR
SST

  

 
Therefore, the larger the R2 value, the more of the variance is explained by the model.  In our case, 
the ANOVA has an R2 value of 81.85% versus the ANCOVA’s 97.9%. This shows that the ANCOVA 
model can predict almost all the variance in our data set from the data given. 
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Question 2 
We will use the hazard function of the lifetime of a lightbulb to find further details about it. 
 

Part A – The Survival Function and Probability Density Function 
The Hazard Function gives the probability that the event of interest (in this case, the failure of the 
bulb) will occur at time t if the measured variable survives to time t. The Hazard Function is denoted 
with the equation: 

ℎ(𝑡𝑡) =
𝑓𝑓(𝑡𝑡)
𝑆𝑆(𝑡𝑡)

 

Where f(t) is the Probability Density Function (pdf) and S(t) is the Survival Function. 
 
The pdf is a function which gives the likelihood that the event of interest will occur between two 
sample points. It is denoted as the following. 

𝑓𝑓(𝑡𝑡) =–𝑆𝑆′(𝑡𝑡) 
 
The Survival Function gives us the probability that the event of interest has not occurred by the 
current time, given as duration t. The difference in time between the beginning point (here when the 
bulb is first turned on at t = 0) and the end point (failure of the bulb, denoted 𝑇𝑇) is known as Survival 
Time. Therefore, the Survival Function can be shown as 

𝑆𝑆(𝑡𝑡) = 𝑃𝑃(𝑇𝑇 > 𝑡𝑡) 
 
We can use the above to define the Hazard Function ℎ(𝑡𝑡). Because S(0) = 1 (the probability that the 
event hasn’t occurred by t = 0 is certain, we can define h(t) as the integrated hazard rate H(t). 

𝐻𝐻(𝑡𝑡) = � ℎ(𝑢𝑢)𝑑𝑑𝑑𝑑
t

0
 

Which allows us to express the pdf as the following. 
𝑓𝑓(𝑡𝑡) = ℎ(𝑡𝑡)𝑒𝑒−𝐻𝐻(𝑡𝑡) 

 
If we simplify our given hazard function for the lifetime of the lightbulb to h(t) = p, we can define the 
Survival Function as the following. 

𝑆𝑆(𝑡𝑡) = 𝑒𝑒−𝑝𝑝𝑡𝑡 
 
Therefore, the Survival Function for our lightbulb example can now be given as the following. 

𝑆𝑆(𝑡𝑡) = � 𝑒𝑒
−𝛼𝛼𝑡𝑡2 , 0 ≤  𝑡𝑡 ≤  1,
 𝑒𝑒−𝛼𝛼𝑡𝑡, otherwise

 

 
This also allows us to determine the pdf in a similar way. Where h(t) = p, the pdf can be expressed as 
the following. 

𝑓𝑓(𝑡𝑡) = 𝑝𝑝𝑒𝑒−𝑝𝑝𝑡𝑡 
Therefore, the Probability Density Function for our lightbulb can be given as the following.  

𝑓𝑓(𝑡𝑡) = �𝛼𝛼 𝑡𝑡 𝑒𝑒−𝛼𝛼𝑡𝑡2 , 0 ≤  𝑡𝑡 ≤  1,
𝛼𝛼 𝑒𝑒−α𝑡𝑡, otherwise
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Part B – Determine the median lifetime of the bulb 
We know that the median is the middle point in a set of values. In this case it would mean that 50% 
of the failures of the lightbulb lie each side of the median point. We know that for our example, the 
Cumulative Distribution Function (cdf) F(t) is given as the following. 

𝐹𝐹(𝑡𝑡) = 𝑃𝑃(𝑇𝑇 ≤ 𝑡𝑡)  =  1–𝑃𝑃(𝑇𝑇 > 𝑡𝑡) 
 
In a probability distribution with cdf of F(t), the median can be defined as m where 

� dF(t)  ≥  
1
2(-∞,𝑚𝑚]

 and � dF(t)  ≥  
1
2[𝑚𝑚,∞)

 

 
If a randomly chosen value (X) is distributed according to F within a given set, the following is true. 

P(X ≤  𝑚𝑚)  ≥  
1
2

 and P(X ≥  𝑚𝑚)  ≥  
1
2

 

 
We are looking for the largest value of t where S(𝑚𝑚)  ≤  0.5, also denoted t0.5, which can be 
computed as the solution to.  

S(t)  =  1 −  0.5 =  0.5 
We understand that the hazard function is a constant, α, therefore using the value we found for S(t) 
in part 1, we find the following. 

let S(t0.5)  =  𝑒𝑒−𝛼𝛼𝑡𝑡0.5  =  0.5 
Therefore, the median survival time is the following. 

t0.5  =  
log 2
𝛼𝛼

 

Which can be rewritten to a function of α 

f(𝛼𝛼)  =  
log 2
t0.5

 

 

Part C – Determine the Probability of Survival > 2 months 
To do this, we can recall our survival function again from part a. 

𝑆𝑆(𝑡𝑡) = � 𝑒𝑒
−𝛼𝛼𝑡𝑡2 , 0 ≤  𝑡𝑡 ≤  1,
 𝑒𝑒−𝛼𝛼𝑡𝑡, otherwise

 

 
In this case, we are measuring the probability that the bulb will last longer than two months, 
therefore where t = 2. Here we can substitute t to get the following function. 

S(2)  =  𝑒𝑒−𝛼𝛼2 



Question 3 
We will construct life tables from a given data set and use Kaplan Mier estimation to compare two 
clinical trials. 
 

Part A – Construct Life Tables from Given Data 
First, we will load the data into R and break into groups of six groups of four weeks each. I have 
created the six groups by registering a new column in the data frame called Month, which is then 
populated with the quotient of [the given week number minus one], plus one. This makes it easier to 
then calculate the values for tables A and B (corresponding to protocols A and B).  
Regarding life table A, to generate the value for ninit, I count how many times protocol A is featured.  
For nlost, I first record in a vector called lost the month numbers where the status of each record 
was 0 and protocol A was used. I then take a factor of this vector, to ensure that any months that 
had zero records are included. I then create a table of the factored vector in order to count the 
number of entries in each month, then extract the frequencies of this table using as.numeric. This 
avoids us having to use a For Loop to do the count. 
The process for finding nevent is the same as for nlost, except we are looking for status 1 rather than 
0. 
Finally, I put these values into the function lifetab()in order to produce the life table. The process 
for getting the values for life table B is the same as the above, except we look for protocol value B 
instead. This gave us the following results: 
 
See Appendix A – R Commands – Lines 212-274. 
 
Life Table for treatments under Protocol A: 

 nsubs nlost nrisk nevent surv pdf hazard se.surv se.pdf se.hazard 
0-1 21 0 21 1 1 0.047619 0.048780 0 0.046471 0.048766 
1-2 20 1 19.5 3 0.952381 0.146520 0.166667 0.046471 0.078142 0.095890 
2-3 16 1 15.5 3 0.805861 0.155973 0.214286 0.087186 0.082610 0.123006 
3-4 12 1 11.5 0 0.649888 0 0 0.107160 NA NA 
4-5 11 2 10 1 0.649888 0.064989 0.105263 0.107160 0.062578 0.105117 
5-6 8 4 6 4 0.584899 NA NA 0.114467 NA NA 

 
Life Table for treatments under Protocol B: 

 nsubs nlost nrisk nevent surv pdf hazard se.surv se.pdf se.hazard 
0-1 21 1 20.5 0 1 0 0 0 NaN NaN 
1-2 20 0 20.0 6 1 0.300000 0.352941 0 0.102469 0.141826 
2-3 14 1 13.5 7 0.700000 0.362962 0.700000 0.102469 0.109016 0.247840 
3-4 6 0 6.0 1 0.337037 0.056172 0.181818 0.107218 0.054303 0.181065 
4-5 5 0 5.0 2 0.280864 0.112345 0.500000 0.103017 0.074057 0.342326 
5-6 3 3 1.5 0 0.168518 NA NA 0.087218 NA NA 

 
From this data we can plot the survival function S(t), probability density function f(t) and hazard 
function h(t) for each treatment, as seen in Figure 7. 
 

See Appendix A – R Commands – Lines 277-304. 
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Figure 7 - Plots of Survival, Probability Density and Hazard Functions 

We can also create survival plots for the above data. This is similar to the Survival Function plot in 
Figure 7 but with added confidence intervals. With survival plots, we have three choices in what 
happens to censored entries. We can either treat those entries as deaths, we can remove them, or 
we can take the proper approach by including censored events as tick marks on the plot where they 
occur in time. In Figure 8, I show a comparison between these three approaches with each plot 
showing a combination of both protocols. 
 
See Appendix A – R Commands – Lines 305-320. 
 

 
Figure 8 - Survival plots demonstrating three approaches to displaying censored events 

 

Part B – Kaplan-Meier Estimation 
Kaplan-Meier estimation is used to accurately account for censored data in survival plots. In Figure 8, 
the third plot we created used this method to display the survival rate where each tick on the plot 
represented a censored entry. The assumptions of Kaplan-Meier estimation are that censoring is not 
related to the death of a patient, patients that come into the study late have the same survival 
probability as those that came in early and that events happened at the times specified. In this part, 
we will use the original weekly data to produce survival plots rather than the monthly data as used 
in part A. These plots are displayed together in Figure 9. 
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See Appendix A – R Commands – Lines 322-338. 
 

 
Figure 9 - Kaplan-Meier Estimation plots demonstrating three approaches to displaying groups and CI 

 

Part C – Analysis of Data and Approaches 
 
Although there are not enough samples in our data set when grouped by month to give an accurate 
reading, we can still infer a reasonable amount of information from the life tables shown in Part A 
and the plots in Figure 7.  
The surv column and Survival Function Plots tell us that patients that were under treatment protocol 
A had a higher chance of surviving after month two, but those on protocol B had a slightly higher 
chance of survival before that point. By the conclusion of the study, over three times as many 
patients on protocol A had survived, compared to protocol B.  
The pdf column and Probability Density Function Plots tell us that the greatest number of patients 
died during month three on both protocols, but that there were twice as many deaths from patients 
on protocol B during that period compared to protocol A. Protocol A had the fewest deaths between 
months three and four, which also saw a decline in deaths for patients on protocol A however the 
fewest deaths on protocol A occurred within the first month. Both groups saw an uptick of deaths 
during month five. 
The hazard column and Hazard Function Plots give us similar information to the previous two 
columns and plots. After the initial month, deaths climbed for patients on both protocols before 
hitting a peak during month three, then dropping for month four, before climbing again towards the 
end of the survey period. Once again, we can see that the rate of death under protocol B is 
significantly higher than on protocol A. 
The survival plots shown in Figure 8 explore how censored entries can be difficult to deal with 
correctly without inducing bias into the results. Both treating censored entries as deaths and 
removing censored entries produce plots that underestimate the true survival time figures. Only the 
final plot, the Kaplan-Meier approach, can reasonably deal with censored entries. 
 
Part B used the same data but grouped weekly rather than monthly, which are detailed in Figure 9. 
This grouping produced much more granulated survival plots compared to those featured in Figure 
8, producing smother lines.  
Separating the plot into two groups, one for each protocol, gives a much more detailed look at 
survival rates over time compared to any of the previously produced data. We can see that survival 
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times for both protocols are very similar up to around week ten, when they diverge by a large 
degree so that by around week seventeen there is well over twice the likelihood of a patient on 
protocol A to survive compared to a patient on protocol B. We can also see that there are far more 
cases of censored data of patients on protocol A compared to those on protocol B, which could be 
the reason the survival rate for protocol A is much higher than for B. Protocol B remarkably reports 
zero deaths or censored entries in most of the final quarter of measurements, which tells us that 
even though more patients on protocol B died early on, those that were left after around week 17 
were likely to continue living past the end of the study. At the same time we can also see that there 
is a large drop in survival rates in the final week for protocol A, looking at the raw data we can see 
that this is due to patients on protocol A both dying and being censored on this week, censored 
likely due to them still being alive but no longer being recorded due to the study period ending.  
 
The third plot, which includes confidence intervals for both protocols, gives a lot of information but 
in my opinion is a little too messy to easily understand. It would probably be better to also have 
separate plots for each protocol when dealing with confidence intervals and use the two grouped 
plots in Figure 9 as reference for how effective each treatment is in comparison to the other. The 
plot we produced, however, is useful to see just how much overlap there is between the lower 
bounds of Protocol A and the upper bounds of Protocol B, which shows that it’s possible one 
approach is as effective as the other, if the survival rates of Protocol A have been enhanced and the 
rates of protocol B have been suppressed in this study, which could be true based on the number of 
censored cases for protocol A.  We may require more sampling and sampling for a longer period to 
see if this is the case, however. 
 
It is clear from the plots that plotting by week rather than month provides us with a more useful 
interpretation, that Kaplan-Meier estimation is far more accurate than treating censored data than 
any other way and that splitting the Kaplan-Meier plot into groups gives us a much better look at 
how survival rates differ based on protocol, and thereby which protocol is more effective at keeping 
patients alive for longer. Therefore, I would say approach B is better in general for assessing survival 
rates. 
 

Part D – Log-Rank Test of Treatments 
A log-rank test can be used to investigate the significance in the differences of treatments to see if 
one approach does increase survival rates compared to another. It copes well with censored data. 
Our null hypothesis here is H0 = no difference in hazard rates between groups. The assumptions of 
the Log-Rank test are the same assumptions that we use for the Kaplan-Meier estimation. In R, the 
log-rank test can be performed with the survdiff() function with 0 as the rho parameter. 
 
See Appendix A – R Commands – Line 341. 
 
Log-Rank Test Results on Weekly Data: 

 
n Observed Expected 

(𝑶𝑶 − 𝑬𝑬)𝟐𝟐

𝑬𝑬
 

(𝑶𝑶 − 𝑬𝑬)𝟐𝟐

𝑽𝑽
 

Protocol A 21 12 15.9 0.956 2.46 
Protocol B 21 16 12.1 1.256 2.46 

Chisq = 2.5 on 1 degrees of freedom, p = 0.1. 
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We are given a P value of 0.1, which is below our α of 0.05, indicating that there likely is not a 
significant difference between the two groups. This was hinted at with our Kaplan-Meier estimation 
in Figure 9 where the both protocols cross twice and remain close to each other until week ten, 
which can often lead to a weak test result. There were also far more censored cases for protocol A 
compared to protocol B, meaning there was a deviation from the Log-Rank (and Kaplan-Meier) 
assumptions. There were also deaths at the end of the measurement period for protocol A and 
many survivals for protocol B that brought the survival rates of the two protocols back to almost the 
same value at the end of the study.  
The difference between the Observed and Expected variables tells us that for there to be a 
significant difference between the two groups, that there needed to be approximately four more 
events observed in protocol A group, four fewer observations in protocol B group or a mixture of 
both over the measurement period.  
The fourth column gives us the difference between the observed and expected values, the smaller 
this value, the closer our data fits what is expected from treatments that are significantly different. If 
we add these two figures up, we get the X2 value of 2.212. By using a Chi Square table, we find that 
the value we need to reject the null hypothesis with a p-value of 0.05 on 1 degrees of freedom must 
be greater than χ2 = 3.84. An X2 value below this shows that we do not have enough difference 
between the two values to be statistically relevant. Indeed, the Chisq value we are given is 2.5 
which, again, is too low to reject the null hypothesis. 
 
With this explored, we must therefore accept the null hypothesis that there is no difference 
between the groups, with the caveat that we may need more data to be certain. 
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Appendix A – R Commands 
 

## Question 1 ################################################################# 1 
# We will use ANCOVAs to analyse the yield of cocoa plants grouped by height  2 
# and also grouped by genotype to discover relationships in the data. 3 
# 4 
# First we load the data: 5 
library(readr) 6 
yields <- read_csv("CocoaYield.csv", col_names = TRUE) 7 
# 8 
# Part a - We will visualize the data and interpret what is seen. 9 
# For this we will use boxplots. First on Yield grouped by HeightGroup: 10 
boxplot(Yield ~ HeightGroup, data = yields, main = "Yields of Cocoa pods by  11 
        HeightGroup", xlab = "Heightgroup Name",  12 
        ylab = "Yield (Pods per year)", boxwex = 0.40) 13 
stripchart(Yield ~ HeightGroup, data = yields, add = TRUE, vertical = TRUE,  14 
           method = "jitter", pch = 1, col = "red") 15 
# Saved as Fig1.png 16 
# Then Yield grouped by Genotype: 17 
boxplot(Yield ~ Genotype, data = yields, main = "Yields of Cocoa pods by  18 
        Genotype", xlab = "Genotype Name", ylab = "Yield (Pods per year)",  19 
        boxwex = 0.40) 20 
stripchart(Yield ~ Genotype, data = yields, add = TRUE, vertical = TRUE,  21 
           method = "jitter", pch = 1, col = "red") 22 
# Saved as Fig2.png 23 
# We'll do two interaction plots too to look for corolation: 24 
interaction.plot(yields$Genotype, yields$HeightGroup, yields$Yield,  25 
                 trace.label = "HeightGroup", 26 
                 xlab = "Genotype Name", ylab = "Mean Yield (Pods per year)") 27 
# Saved as Fig3.png 28 
interaction.plot(yields$HeightGroup, yields$Genotype, yields$Yield,  29 
                 trace.label = "Genotype", 30 
                 xlab = "Heightgroup Name",  31 
                 ylab = "Mean Yield (Pods per year)") 32 
# Saved as Fig4.png 33 
# See report for analysis. 34 
# 35 
# Part B - We will run a two way ANOVA on the above data. 36 
# 37 
# First we require factors: 38 
y        <- yields$Yield 39 
height   <- yields$Height 40 
genotype <- yields$Genotype 41 
 42 
hgtGrp   <- factor(yields$HeightGroup) 43 
gnoGrp   <- factor(yields$Genotype) 44 
# Now we check for data balance: 45 
table(hgtGrp, gnoGrp) 46 
# RESULTS 47 
#        gnoGrp 48 
# hgtGrp aa Aa AA 49 
# high    3  3  3 50 
# low     3  3  3 51 
# Data are balanced with 3 observations per group. 52 
# We now create contrasts 53 
contrasts(hgtGrp) <- contr.sum 54 
contrasts(gnoGrp) <- contr.sum 55 
# And run the two-way ANOVA: 56 
results <- lm(y ~ hgtGrp*gnoGrp, data = yields) 57 
anova(results) 58 



100225776 Applied Statistics Miniproject 4 

- 16 - 

# RESULTS 59 
#               Df  Sum Sq Mean Sq F value    Pr(>F)     60 
# hgtGrp         1 162.000 162.000 23.7073 0.0003856 *** 61 
# gnoGrp         2 203.444 101.722 14.8862 0.0005620 *** 62 
# hgtGrp:gnoGrp  2   4.333   2.167  0.3171 0.7341961     63 
# Residuals     12  82.000   6.833   64 
# See report for analysis. 65 
# We must also run a summary to check for significant effects: 66 
sm <- summary(results) 67 
sm 68 
# RESULTS 69 
# Residuals: 70 
#    Min     1Q Median     3Q    Max  71 
# -3.333 -2.000 -0.500  1.583  4.000  72 
# 73 
# Coefficients: 74 
#                 Estimate Std. Error t value Pr(>|t|)     75 
# (Intercept)      30.8889     0.6161  50.133  2.6e-15 *** 76 
# hgtGrp1           3.0000     0.6161   4.869 0.000386 *** 77 
# gnoGrp1          -4.3889     0.8714  -5.037 0.000291 *** 78 
# gnoGrp2           0.6111     0.8714   0.701 0.496471     79 
# hgtGrp1:gnoGrp1   0.1667     0.8714   0.191 0.851510     80 
# hgtGrp1:gnoGrp2   0.5000     0.8714   0.574 0.576687     81 
# 82 
# Residual standard error: 2.614 on 12 degrees of freedom 83 
# Multiple R-squared:  0.8185, Adjusted R-squared:  0.7429  84 
# F-statistic: 10.82 on 5 and 12 DF,  p-value: 0.0004069 85 
# See Report for Analysis. 86 
#  87 
# Next, we need to find the sample means: 88 
Xbarij <- tapply(y, yields[,3:4],mean) 89 
Xbarij 90 
# RESULTS: 91 
#                    Genotype 92 
# HeightGroup       aa Aa       AA 93 
# high        29.66667 35 37.00000 94 
# low         23.33333 28 32.33333 95 
# 96 
# Store the RSE, MS(E), SE and SD: 97 
RSE <- sm$sigma 98 
MSE <- anova(results)['Residuals', 'Mean Sq'] 99 
SE  <- MSE / sqrt(9) 100 
SD  <- MSE / sqrt(4.5) 101 
# Use these to find the critical value from t-distribution with 12 df then 102 
# find the Margin of Error from that: 103 
CV <- qt(.95,12) 104 
ME <- CV * (RSE / sqrt(4.5)) 105 
ME 106 
# RESULTS: 107 
# [1] 2.196281 108 
# 109 
# Finally, add and subtract the ME to each sample mean to find 110 
# the bounds for 95% CI: 111 
Xbarij - ME 112 
Xbarij + ME 113 
# RESULTS: 114 
# Min                      Genotype 115 
# HeightGroup       aa       Aa       AA 116 
# high        27.47039 32.80372 34.80372 117 
# low         21.13705 25.80372 30.13705 118 
# 119 
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# Max                      Genotype 120 
# HeightGroup       aa       Aa       AA 121 
# high        31.86295 37.19628 39.19628 122 
# low         25.52961 30.19628 34.52961 123 
# See Report for Analysis 124 
# 125 
# Test for normality with QQ plot: 126 
plot(results, which = 2) 127 
# Saved as fig5.png 128 
# See report for analysis. 129 
# 130 
# Test for Homogeneity using the Lavene Test: 131 
yields$absres <- abs(results$residuals) 132 
tmp <- lm(absres ~ hgtGrp*gnoGrp, data = yields) 133 
summary(tmp) 134 
 135 
# RESULTS: 136 
# Residuals: 137 
#   Min       1Q   Median       3Q      Max  138 
# -0.40790 -0.12780  0.03445  0.19538  0.26062  139 
# 140 
# Coefficients: 141 
#                  Estimate Std. Error t value Pr(>|t|)     142 
#  (Intercept)      0.58302    0.06090   9.573 5.73e-07 *** 143 
#  hgtGrp1         -0.16635    0.06090  -2.731   0.0182 *   144 
#  gnoGrp1         -0.16927    0.08613  -1.965   0.0729 .   145 
#  gnoGrp2         -0.27643    0.08613  -3.210   0.0075 **  146 
#  hgtGrp1:gnoGrp1 -0.16417    0.08613  -1.906   0.0809 .   147 
#  hgtGrp1:gnoGrp2  0.11847    0.08613   1.376   0.1941     148 
#  149 
# Residual standard error: 0.2584 on 12 degrees of freedom 150 
# Multiple R-squared:  0.763, Adjusted R-squared:  0.6642  151 
# F-statistic: 7.725 on 5 and 12 DF,  p-value: 0.001851 152 
# See report for analysis. 153 
# 154 
# Part C - Run an ANCOVA with Genotype factor and Height covariate, report 155 
# on significant effects with interpretration. 156 
#  157 
# First, check the suitability of ANCOVA by plotting yield against height: 158 
plot(y ~ height, type = "n", main = "Relationship between Response and  159 
     Covariate", xlab = "Height (meters) (Covariate)",  160 
     ylab = "Yield (Pods per year) (Response)") 161 
points(height[gnoGrp=="aa"], y[gnoGrp=="aa"], pch="1", col=2) 162 
points(height[gnoGrp=="Aa"], y[gnoGrp=="Aa"], pch="2", col=4) 163 
points(height[gnoGrp=="AA"], y[gnoGrp=="AA"], pch="3", col=6) 164 
legend( x = "topright", title = "Genotype (Factor)",  165 
        legend = c("aa", "Aa", "AA"), pch = c("1","2","3"), col = c(2,4,6)) 166 
# Saved as Fig5.png 167 
# See report for analysis. 168 
# 169 
# Factors and contrasts have previously been set, we will just check xbari and 170 
# ybari: 171 
Xbari <- tapply(height, gnoGrp, mean) 172 
ybari <- tapply(y, gnoGrp, mean) 173 
Xbari 174 
ybari 175 
# RESULTS: 176 
# > Xbari 177 
# aa       Aa       AA  178 
# 9.775000 9.173333 9.056667  179 
# > ybari 180 
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# aa       Aa       AA  181 
# 26.50000 31.50000 34.66667  182 
# 183 
# Now center the covariate and run the ANCOVA: 184 
heightC <- height - mean(height) 185 
results <- lm(y ~ heightC + gnoGrp) # covariate first. 186 
summary(results) 187 
# RESULTS: 188 
# Residuals: 189 
# Min       1Q   Median       3Q      Max  190 
# -1.12065 -0.53749  0.05905  0.47209  1.34477  191 
# 192 
# Coefficients: 193 
#              Estimate Std. Error t value Pr(>|t|)     194 
#  (Intercept) 30.88889    0.19415 159.102  < 2e-16 *** 195 
#  heightC      1.72409    0.09189  18.762 2.55e-11 *** 196 
#  gnoGrp1     -5.14749    0.27752 -18.548 2.98e-11 *** 197 
#  gnoGrp2      0.88984    0.27496   3.236  0.00597 **  198 
#   199 
# Residual standard error: 0.8237 on 14 degrees of freedom 200 
# Multiple R-squared:  0.979, Adjusted R-squared:  0.9745  201 
# F-statistic: 217.3 on 3 and 14 DF,  p-value: 5.653e-12 202 
anova(results) 203 
# RESULTS: 204 
#           Df  Sum Sq Mean Sq F value    Pr(>F)     205 
# heightC    1 175.444 175.444  258.59 2.020e-10 *** 206 
# gnoGrp     2 266.835 133.417  196.65 5.669e-11 *** 207 
# Residuals 14   9.498   0.678 208 
# See report for analysis. 209 
############################################################################### 210 
 211 
# Question 3 ################################################################## 212 
# We will construct life tables from a given data set and use Kaplan Mier  213 
# estimation to compare two clinical trials. 214 
# 215 
# Part A - Prepare data and produce life tables and plots. 216 
# First, load the package and data: 217 
library(KMsurv) 218 
cancer_data <- read_csv("CancSurv.csv", col_names = TRUE) 219 
# Use the Time variable to assign each entry into one of 6 'Month' groups: 220 
cancer_data$Month <- c((cancer_data$Time - 1) %/% 4 + 1) 221 
# Assign variables for Life Table A and create it: 222 
tis   <- c(0:6) # 6 groups plus 1 223 
ninit <- sum(cancer_data$Protocol == "A") 224 
lost  <- cancer_data$Month[cancer_data$Status == 0 &  225 
                            cancer_data$Protocol == "A"] 226 
nlost <- as.numeric(table(factor(lost, levels = 1:6))) 227 
event <- cancer_data$Month[cancer_data$Status == 1 &  228 
                             cancer_data$Protocol == "A"] 229 
nevent <- as.numeric(table(factor(event, levels = 1:6))) 230 
lifetableA <- lifetab(tis, ninit, nlost, nevent) 231 
lifetableA 232 
# RESULTS: 233 
#     nsubs nlost nrisk nevent      surv        pdf     hazard    se.surv 234 
# 0-1    21     0  21.0      1 1.0000000 0.04761905 0.04878049 0.00000000 235 
# 1-2    20     1  19.5      3 0.9523810 0.14652015 0.16666667 0.04647143 236 
# 2-3    16     1  15.5      3 0.8058608 0.15597306 0.21428571 0.08718565 237 
# 3-4    12     1  11.5      0 0.6498877 0.00000000 0.00000000 0.10716023 238 
# 4-5    11     2  10.0      1 0.6498877 0.06498877 0.10526316 0.10716023 239 
# 5-6     8     4   6.0      4 0.5848990         NA         NA 0.11446690 240 
# 241 
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#     se.pdf  se.hazard 242 
# 0.04647143 0.04876598 243 
# 0.07814240 0.09589035 244 
# 0.08261011 0.12300575 245 
# NaN        NaN 246 
# 0.06257811 0.10511726 247 
# NA         NA 248 
# 249 
# Same for Life Table B: 250 
ninit <- sum(cancer_data$Protocol == "B") 251 
lost  <- cancer_data$Month[cancer_data$Status == 0 &  252 
                            cancer_data$Protocol == "B"] 253 
nlost <- as.numeric(table(factor(lost, levels = 1:6))) 254 
event <- cancer_data$Month[cancer_data$Status == 1 &  255 
                             cancer_data$Protocol == "B"] 256 
nevent <- as.numeric(table(factor(event, levels = 1:6))) 257 
lifetableB <- lifetab(tis, ninit, nlost, nevent) 258 
lifetableB 259 
# RESULTS: 260 
#     nsubs nlost nrisk nevent      surv        pdf    hazard    se.surv 261 
# 0-1    21     1  20.5      0 1.0000000 0.00000000 0.0000000 0.00000000 262 
# 1-2    20     0  20.0      6 1.0000000 0.30000000 0.3529412 0.00000000 263 
# 2-3    14     1  13.5      7 0.7000000 0.36296296 0.7000000 0.10246951 264 
# 3-4     6     0   6.0      1 0.3370370 0.05617284 0.1818182 0.10721839 265 
# 4-5     5     0   5.0      2 0.2808642 0.11234568 0.5000000 0.10301783 266 
# 5-6     3     3   1.5      0 0.1685185         NA        NA 0.08721828 267 
# 268 
#     se.pdf se.hazard 269 
# NaN        NaN 270 
# 0.10246951 0.1418263 271 
# 0.10901684 0.2478407 272 
# 0.05430301 0.1810653 273 
# 0.07405736 0.3423266 274 
# NA         NA 275 
# See report for analysis. 276 
# Create plots of functions from the above data: 277 
x  <- 0.5+c(0:5) 278 
y  <- seq(0, 1, by = 0.2) 279 
y2 <- seq(0, 0.5, by = 0.1) 280 
par(mfrow=c(1,3)) 281 
 282 
plot(x, y, type = "n", xlab = "Time (Months)", ylab = "Proportion Surviving", 283 
     main = "Survival Function Plots") 284 
lines(x, lifetableA[,5], type = "l", col = 1) 285 
lines(x, lifetableB[,5], type = "l", col = 2) 286 
legend( x = "topright",lty = 1, col = c(1,2), y.intersp = 2.5, 287 
        legend = c("Protocol A", "Protocol B")) 288 
 289 
plot(x, y2, type = "n", xlab = "Time (Months)", ylab = "Probability Density", 290 
     main = "Probability Density Function Plots") 291 
lines(x, lifetableA[,6], type = "l", col = 1) 292 
lines(x, lifetableB[,6], type = "l", col = 2) 293 
legend( x = "topright",lty = 1, col = c(1,2), y.intersp = 2.5, 294 
        legend = c("Protocol A", "Protocol B")) 295 
 296 
plot(x, y, type = "n", xlab = "Time (Months)", ylab = "Hazard Rate", 297 
     main = "Hazard Function Plots") 298 
lines(x, lifetableA[,7], type = "l", col = 1) 299 
lines(x, lifetableB[,7], type = "l", col = 2) 300 
legend( x = "topright",lty = 1, col = c(1,2), y.intersp = 2.5, 301 
        legend = c("Protocol A", "Protocol B")) 302 
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# Saved as Fig7.png 303 
# 304 
# Create Survival plots from the original data: 305 
library(survival) 306 
 307 
fit <- survfit(Surv(Month, Status*0+1) ~ 1, data = cancer_data) 308 
plot(fit, main = "Censored Times Treated as Death", 309 
     xlab = "Time (Months)", ylab = "S(t)") 310 
 311 
cancer_data2 <- subset(cancer_data, Status == 1) 312 
fit <- survfit(Surv(Month, Status) ~ 1, data = cancer_data2) 313 
plot(fit, main = "Censored Individuals Removed", 314 
     xlab = "Time (Months)", ylab = "S(t)") 315 
 316 
fit <- survfit(Surv(Month, Status) ~ 1, data = cancer_data) 317 
plot(fit, main = "Censoring Done Properly", 318 
     xlab = "Time (Months)", ylab = "S(t)", mark.time = TRUE) 319 
# Saved as Fig8.png 320 
# 321 
# Part B - Produce Kaplan Meier plots from weekly data: 322 
fit <- survfit(Surv(Time, Status) ~ 1, data = cancer_data) 323 
plot(fit, main = "Kaplan-Meier Estimation", 324 
     xlab = "Time (Weeks)", ylab = "S(t)", mark.time = TRUE) 325 
 326 
fit <- survfit(Surv(Time, Status) ~ Protocol, data = cancer_data) 327 
plot(fit, main = "Kaplan-Meier Estimation by Group", conf.int = FALSE, 328 
     xlab = "Time (Weeks)", ylab = "S(t)", mark.time = TRUE, col = c(1,2)) 329 
legend( x = "topright",lty = 1, col = c(1,2), y.intersp = 2.5, 330 
        legend = c("Protocol A", "Protocol B")) 331 
 332 
fit <- survfit(Surv(Time, Status) ~ Protocol, data = cancer_data) 333 
plot(fit, main = "KM by Group with Confidence Intevals", conf.int = TRUE, 334 
     xlab = "Time (Weeks)", ylab = "S(t)", mark.time = TRUE, col = c(1,2)) 335 
legend( x = "topright",lty = 1, col = c(1,2), y.intersp = 2.5, 336 
        legend = c("Protocol A", "Protocol B")) 337 
# Saved as Fig9.png 338 
# 339 
# Part D - Do a log-rank test to investigate the significance of differences: 340 
survdiff(Surv(Time, Status) ~ Protocol, data = cancer_data, rho = 0) 341 
# RESULTS: 342 
#             N Observed Expected (O-E)^2/E (O-E)^2/V 343 
# Protocol=A 21       12     15.9     0.956      2.46 344 
# Protocol=B 21       16     12.1     1.256      2.46 345 
# 346 
# Chisq= 2.5  on 1 degrees of freedom, p= 0.1  347 
# See report for analysis. 348 
############################################################################### 349 
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